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Correcting MODIS aerosol optical depth products using a ridge
regression model
Renlong Hang, Qingshan Liu, Guiyu Xia and Huihui Song

Jiangsu Key Laboratory of Big Data Analysis Technology, School of Information and Control, Nanjing
University of Information Science and Technology, Nanjing, China

ABSTRACT
Aerosol optical depth (AOD) is an important metric for the concentra-
tion of aerosols in the atmosphere. Dark target (DT) algorithm is a
widely used physical model to retrieve AOD over land from Moderate
Resolution Imaging Spectroradiometer (MODIS) data. However, due to
the limitation of surface ‘dark-target’ in some regions and over certain
surface types, it does not work very well. In this paper, we propose two
hybrid frameworks based on ridge regression (RR) to improve the
retrieval accuracy. They are serial and parallel approaches. In both
frameworks, the DT algorithm is used as a baseline to derive an initial
result, and the bias between the derived AOD and the ground-truth is
corrected by the RR model. To validate the effectiveness of the
proposed methods, we apply them on 3093 collocated MODIS and
Aerosol Robotic Network (AERONET) observations, covering 10
stations at all available time in China. The obtained results demon-
strate that the proposed methods can improve retrieval performance
compared to the corresponding DT algorithm and the RR model.
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1. Introduction

Aerosols are small solid or liquid particles suspended in the atmosphere. They can
scatter and absorb solar radiance, and modify the microphysical and radiative properties
of clouds. One of the biggest challenges of current climate research is to quantify the
effect of aerosols on the Earth’s radiation budget (Kaufman, Tanr, and Boucher 2002). As
a primary aerosol optical parameter which represents the aerosol radiative extinction in
the atmosphere, aerosol optical depth (AOD), therefore, is considered as a key factor to
understand aerosol climate effects (Huang et al. 2015).

AOD data can be obtained from either ground-based instruments or satellite-based
instruments. Ground-based measurements, such as Aerosol Robotic Network (AERONET)
(Holben et al. 1998; Dubovik et al. 2000), can provide accurate aerosol information and
enable frequent acquisition of data each day but only for individually discrete locations
(Gao et al. 2016). Due to the high variation of aerosols in space and time, satellite
observations, such as Moderate Resolution Imaging Spectroradiometer (MODIS) (King
et al. 1992), are more suitable for deriving aerosol properties with greater spatial coverage.
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In general, AERONET is often referred to as ground-truth to validate the satellite retrieval
performance (Chu et al. 2002)

Since 2000, the MODIS instrument aboard the Terra satellite has been a major source
of high-quality aerosol information. It observes reflected solar radiance through 36
spectral channels ranging from 414 nm to 14µm. The goal of retrieval is to derive
AOD from the observed spectral values directly. Current operational MODIS retrieval
model over land is the Collection 6 dark target (DT) algorithm (Levy et al. 2013). First, the
measured top of the atmosphere (TOA) reflectance within each 10 km � 10 km retrieval
box is screened to remove unsuitable (e.g., cloudy, desert, snow/ice, inland water, and
bright) pixels, and the DT pixels are identified in the 2.12µm channel. Second, an
additional 20% darkest and 50% brightest pixels defined in the 0.66µm channel are
discarded, and the remaining pixel-level reflectance is averaged. Finally, the TOA reflec-
tance in the 2.12µm channel is related to surface reflectance at visible wavelengths
(0.47µm and 0.66µm) via an assumed spectral/directional relationship, which are subse-
quently used to determine the total AOD from a weighted combination of fine-mode
dominated and coarse-mode (dust) dominated aerosol models by matching the aver-
aged TOA reflectance at these wavelengths.

However, due to the limitation of surface ‘dark-target’ in some regions and over
certain surface types, DT algorithm does not work very well (Huang et al. 2015). Recently,
some works about using machine learning models to retrieve AOD at given locations
have been proposed (Vucetic et al. 2008; Lary et al. 2009; Hang et al. 2017; Gao et al.
2016). They aim to learn a mapping between AOD and satellite observations from data
itself. These models often consist of two components. First is using the collocated
satellite and ground-based observations to train a regression model. Then, the trained
model is employed to predict AOD for satellite observations without ground-truth.
Among various models, neural networks (NNs) (Vucetic et al. 2008; Ristovski, Vucetic,
and Obradovic 2012) and support vector machines (SVMs) (Lary et al. 2009; Nguyen et al.
2011; Sun et al. 2016) are two popular ones, because they can accurately approximate
complex non-linear relationships between satellite observations and ground-based
observations. However, most of the existing machine learning models only take a part
of the spectral values as features, resulting in the loss of effective information. Besides,
the small number of available training data also degrades the performance of machine
learning models. To address these issues, a graph regularized non-linear ridge regression
model was proposed in (Hang et al. 2017), which obtains superior performances as
compared to SVMs and NNs.

Machine learning models are data-driven methods without using any domain knowl-
edge. They don’t make any priori assumptions on variable relations or rigidly functional
forms, and achieve higher performances than physical models (e.g., DT algorithm) if
adequate amounts of training data are available. However, machine learning models
encounter difficulties in retaining the physical explanations or structure knowledge of a
physical system, because they are usually considered as black-box models, and their
parameters do not generally represent physical parameters in a physical system. In
contrast, physical models depend on the prior knowledge about the radiation transfer
process. They have strong generalization capabilities and moderate retrieval perfor-
mances. Recently, several works were proposed to fuse the prior knowledge of physical
models into the machine learning models for simulating plant growth (Qu and Hu 2009;
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Fan et al. 2015). Inspired by them, in this paper, we propose two hybrid frameworks to
correct the MODIS AOD product. In both frameworks, the DT algorithm is used as a
baseline to derive an initial result, and the bias between the derived AOD and the
ground-truth is corrected by the RR model.

2. Data set

2.1. AERONET data

AERONET is a global network of about 850 ground-based instruments that observe aerosols
(Holben et al. 1998). The instruments used are CIMEL spectral radiometers thatmeasure direct-
sun and diffuse-sky radiance, and determine AOD in different spectral bands centred on the
nominal wavelengths of 340 nm, 440 nm, 670 nm, and others (Petrenko, Ichoku, and
Leptoukh 2012). To facilitate inter-comparisons with other instruments, these data are
interpolated to 550 nm using the quadratic fit on log-log scale from all wavelengths, at a
particular location and time (Remer et al. 2005). We collect Level 2.0 cloud-screened AERONET
AODs from ten stations at all available time in China. They are Beijing (39:98�N,116:38�E),
XiangHe (39:75�N,116:96�E), Hangzhou-ZFU (30:26�N,119:73�E), Hefei (31:91�N,117:16�E),
Hong_Kong_PolyU (22:30�N,114:18�E), Hong_Kong_Sheung (22:48�N,114:12�E), SACOL
(35:95�N,104:14�E), Taihu (31:42�N,120:22�E), Xinglong (40:40�N,117:58�E), and Yulin
(38:28�N,109:72�E) stations.

2.2. MODIS data

MODIS is a key instrument aboard the Terra satellite for the collection of aerosol and cloud
information. It has a swath width of 2330 km, and achieves global coverage in about two
days. The MODIS instrument has a single camera observing the TOA reflectance over 36
spectral channels at three different spatial resolutions (250 m, 500 m, 1 km). We obtain the
MODIS Level-1B calibrated radiance product MOD021KM with a spatial resolution of 1 km,
covering the same ten stations as AERONET data. Over the same spatial and temporal
range, we obtain the Level-2 aerosol-retrieval product MOD04 with a spatial resolution of
10 km, a geolocation product MOD03 with 1 km resolution, and a cloud mask product
MOD35 with a resolution of 1 km. Since the spatial resolution of MOD04 is different from
that of MOD03 or MOD35, we need to magnify the MOD04 product by 10 times via a
nearest-neighbor interpolation method.

2.3. Collocated AERONET-MODIS data

We obtain a total of 3093 spatially and temporally collocated observations from MODIS
and AERONET at 10 stations. Consistent with the work in (Vucetic et al. 2008), each
observation corresponds to a spatial region 30 km � 30 km surrounding an AERONET
site, and the observation is generated if the following conditions are met: the region
contains at least one non-cloud pixel, at least one MODIS AOD retrieval with quality
assurance (QA) >1 is available, and at least one AERONET AOD retrieval is available
within � 30 min of the MODIS overpass. Each observation is represented as a vector
ðxT; ymod; yÞ, where x 2 <36 is the average reflectance values for the 36 channels over

INTERNATIONAL JOURNAL OF REMOTE SENSING 3277



the cloud-free pixels, ymod is the average MODIS AOD at 550 nm, and y is the average
AERONET AOD at 550 nm.

3. Methodology

Machine learning models have been used to retrieve AOD at given locations, because
they can approximate the relationship between the spectral values and AOD. However,
the physical variables (features) in machine learning models such as SVMs are often
mapped to other spaces, making the learned regression model can not be explained
with physical meanings. To avoid this problem, we select a linear model called ridge
regression (RR) as the basic machine learning model.

As shown in Figure 1, the proposed hybrid model consists of two sub-models: the DT
algorithm and the RR model. The coupling process between them can be formulated as:

ŷ ¼ φðxÞ ¼ ymod � fðx;wÞ; (1)

where ymod is the DT algorithm, fðx;wÞ is the RR model, w is the parameter vector in the
RR model, ŷ is the estimated AOD, and the symbol ‘� ‘ represents the coupling opera-
tion between the two sub-models. Since the sub-model ymod can be obtained from the
MOD04 product, we only need to introduce the basic idea of the other sub-model RR
before presenting the hybrid model.

3.1. Ridge regression model

Given , collocated AERONET-MODIS training samples xi; yif g,i¼1, the main idea of linear
regression is to fit a function fðx;wÞ ¼ xTw þ b such that the residual sum of square (loss

function) is minimized: ðw�; b�Þ ¼ argminw;b
P,

i¼1
k fðxi;wÞ � yik2. For simplicity, we append

a new element 1 to each xi. Then, the coefficient b can be absorbed into w. Let

y ¼ ½y1; � � � ; y,	T;X ¼ ½x1; � � � ; x,	T, where the superscript ‘T‘ denotes the transpose of vectors
or matrices, we can rewrite the loss function as a matrix form w� ¼ argminw k Xw � yk2
whose solution is w� ¼ ðXTXÞ�1XTy.

DT algorithm

RR model

Coupling

AOD

Figure 1. Schematic diagram of the hybrid model, which consists of the DT algorithm and the RR
model.
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For the aerosol retrieval, there are only several ground-based stations in China, result-
ing in limited numbers of the ground-truth AOD. Besides, the ground-based observations
must match with the satellite observations in both time and space, which further reduces
the available ground-truth. On the other hand, the spectral reflectances are highly
correlated with each other. Thus, the covariance matrix XTX is often singular. One
popularly adopted method to handle this issue is imposing a penalty on the norm of w:

w� ¼ argmin
w

k Xw � yk2 þ α k wk2; (2)

where α is a regularization parameter, and the solution is:

w� ¼ ðXTXþ αIÞ�1XTy; (3)

where I is an identity matrix. The term α k wk2 in Eq. (2) is called Tikhonov regularizer
(Tikhonov 1963). In statistics, this regularization method is called RR.

3.2. Hybrid model

In general, there exists no generic approach to design the coupling connections. The
actual coupling framework is more problem dependent and can be quite complicated,
because it depends on the form in which domain knowledge is available. For aerosol
retrieval, the domain knowledge can be derived from the DT algorithm. Thus, we
employ two simple yet effective coupling frameworks: the serial framework shown in
Figure 2(a) and the parallel framework shown in Figure 2(b).

In the serial framework, the retrieved AOD from the DT algorithm is used as a feature
for the subsequent RR model, which can be written as:

ŷ ¼ ymod � fðx;wÞ ¼ fð�x;wÞ; (4)

Residual

(a)

(b)

Figure 2. Two coupling frameworks: (a) the serial framework and (b) the parallel framework.
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where �x ¼ ½xT; ymod	T. The optimal parameter w� in Eq. (4) can be derived according to
Eq. (3). In the testing stage, we firstly compute the initial AOD by the DT algorithm, and
then estimate the final AOD value as ŷt ¼ �xTt w

�. Similar to (Lary et al. 2009), the RR
model plays an important role to correct the retrieval bias. More importantly, all spectral
reflectance values are fed into the RR model, including the values that are not used in
the physical model, making the framework obtains higher performance and can indicate
the importance of each channel.

In the parallel framework, the RR model is applied to learn the residual between the
retrieved AOD by the DT algorithm and the ground-truth AOD, which can be written as:

ŷ ¼ ymod � fðx;wÞ ¼ ymod þ fðx;wÞ: (5)

Thus, the ground-truth for the RR model is y � ymod, instead of y. The optimal parameter
w� in Eq. (5) can also be derived according to Eq. (3). In the testing stage, we firstly
compute the residual by the RR model, and then estimate the final AOD value
as ŷt ¼ ymod þ xTtw

�.
To demonstrate the superiority of the two coupling frameworks, we compare them

with the two sub-models: DT and RR. The regularization parameter α in the RR model is
chosen from f10�3; � � � ; 103g via a five-fold cross validation. In all the experiments, we
randomly divide the data from each station into the training set and the testing set. The
training set is used to train the parameters in the RR model, whereas the testing set is
used to evaluate the performance of each model. In order to reduce the effect of
random selection, all the algorithms are repeated 10 times and average performances
are reported. Without loss of generality, we use two mainstream evaluation metrics: the
root mean square error (RMSE) to evaluate the accuracy of the estimations, and the
Pearson’s correlation coefficient r to evaluate the goodness of fit.

4. Experimental results

In order to analyze the effect of α on the retrieval performance achieved by three RR
related models, we take Beijing and XiangHe stations as an example to establish the
experiment. Figure 3 shows the experimental results using 50% samples as the training
set and the rest as the testing set. As α increases, RMSE firstly decreases and then
increases. Thus, the optimal α value is set to 10�1 in the following experiments.

Figure 4 demonstrates the performance of different models in terms of average r
values and standard deviations using different numbers of training samples from 10
stations. From this figure, several conclusions can be observed. First, as the number of
training samples increases, the r values achieved by RR, serial and parallel frameworks
increase, while those achieved by DT are relatively stable. This indicates that the
performance of physical models don’t depend on the available data. Second, when
the percent of training samples is 10%, RR obtains inferior performance as compared to
DT, because it is difficult to train a strong machine learning model with such a small
number of training samples. Similarly, the residual between the retrieved AOD from DT
and the ground-truth AOD can not be accurately learned by RR, thus the parallel
framework is a little worse than DT. Different from RR and the parallel framework, the
serial framework considers the retrieved AOD by DT as a feature. This powerful feature
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will be given a large weight to effectively address the issue of small training samples,
making the serial framework a little better than DT. The last but not the least, when the
percent of training samples exceeds 10%, DT achieves higher performance than RR in
most cases, because RR is a linear model, failing to adequately model the complex non-
linear relationship between the spectral reflectance and AOD. In contrast, the serial and
parallel frameworks are capable of correcting the bias between the ground-truth AOD
and the retrieved one, thus achieving better performance than DT. This sufficiently
certify the effectiveness of the proposed frameworks. Besides, the serial framework

( )10log
-3 -2 -1 0 1 2 3

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
M

SE

RR
Serial
Parallel

Figure 3. Effects of parameter α on the retrieval performance.

r

0.0 0.2 0.4 0.6 0.8 1.0
0.84
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Training samples (%)
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Serial
Parallel

Figure 4. r and standard deviations achieved by applying four different methods under different
numbers of training samples. Standard deviations are shown as the error bars in the vertical
direction.
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may be a more promising one, because it attains superior performance than the parallel
framework.

All the aforementioned conclusions can be further recognised from another evalua-
tion metric RMSE in Figure 5, where the smaller values correspond to the better
performance. In addition, Figure 6 shows the scatter plot of the retrieved AOD by the

0.0 0.2 0.4 0.6 0.8 1.0
0.12

0.14

0.16

0.18

0.20

0.22

0.24

Training samples (%)

R
M

SE

DT
RR
Serial
Parallel

Figure 5. RMSE and standard deviations achieved by applying four different methods under
different numbers of training samples. Standard deviations are shown as the error bars in the
vertical direction.

Figure 6. Scatter plot of the retrieved AOD at λ ¼ 550 nm by the serial framework and DT versus the
ground-truth using 50% training samples. Ideal retrievals are represented by a solid line, while
dashed lines correspond to boundaries of a region of acceptable retrievals.
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serial framework and DT versus the ground-truth AOD. It is demonstrated that the
retrieved AOD values by the serial framework are closer to the ideal ones than those
by DT, especially when the ideal AOD values are small. Besides, for the serial framework,
there are more numbers of points that fall into the region of acceptable retrievals
(Ristovski, Vucetic, and Obradovic 2012; Remer et al. 2005) than DT. Similar conclusions
can be observed from Figure 7, which demonstrates the scatter plot of the retrieved
AOD by the parallel framework and DT versus the ground-truth AOD.

We also test the robustness of the proposed frameworks on surface types and
seasons of observations. Similar to Figure 3, we use Beijing and XiangHe stations to
construct experiments, because they have more numbers of samples than other stations
(i.e., 843 observations at Beijing site and 674 observations at XiangHe site). Table 1 lists
the number of observations in different seasons. We test on one season data and train
different models on the remaining three seasons. The detailed performance of different
models in terms of RMSE and r are reported in Tables 2 and 3 respectively, where the
best results are highlighted by bold fonts. From these tables, we can observe that the
serial framework achieves superior performance than the other models in three seasons,

Figure 7. Scatter plot of the retrieved AOD at λ ¼ 550 nm by the parallel framework and DT versus
the ground-truth using 50% training samples. Ideal retrievals are represented by a solid line, while
dashed lines correspond to boundaries of a region of acceptable retrievals.

Table 1. Sample distributions in different seasons at Beijing and XiangHe
stations.
Season Months No. of observations

Spring Mar-May 443
Summer Jun-Aug 441
Autumn Sep-Nov 578
Winter Dec-Feb 55
Total – 1517
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while the parallel framework is a little better than the serial one in terms of average
performance due to the accurate prediction in the winter season. Besides, Table 4 shows
the proportion of data number within the acceptable region (PAR). It can be observed
that the parallel and serial frameworks can obtain more numbers of acceptable retrievals
than DT and RR. Similarly, Tables 5–7 demonstrate the performances of different models
on different stations, where one station is used as the training set and the other one as
the testing set. Once again, the parallel framework obtains the highest performance
than the other models.

Table 2. RMSE comparison by season using four different methods at Beijing and XiangHe stations.
Method Spring Summer Autumn Winter Average

DT 0.2044 0.2777 0.1670 0.0637 0.1728
RR 0.2099 0.3027 0.1988 0.1498 0.2153
Parallel 0.1724 0.2517 0.1368 0.0617 0.1557
Serial 0.1557 0.2429 0.1364 0.0990 0.1585

Table 3. r comparison by season using four different methods at Beijing and XiangHe stations.
Method Spring Summer Autumn Winter Average

DT 0.9285 0.9230 0.9478 0.9298 0.9323
RR 0.8747 0.8998 0.9164 0.5609 0.8130
Parallel 0.9337 0.9322 0.9612 0.9461 0.9433
Serial 0.9381 0.9366 0.9621 0.8459 0.9207

Table 4. PAR comparison by season using four different methods at Beijing and XiangHe stations.
Method Spring Summer Autumn Winter Average

DT 0.4944 0.4989 0.6765 0.8182 0.6220
RR 0.4673 0.4739 0.4983 0.3636 0.4508
Parallel 0.6682 0.5964 0.7751 0.8727 0.7281
Serial 0.6275 0.6009 0.6972 0.6364 0.6405

Table 5. RMSE comparison by station using four different methods at Beijing and XiangHe stations.
Station DT RR Parallel Serial

Beijing 0.2406 0.2861 0.2199 0.2160
XiangHe 0.1726 0.2764 0.1601 0.2086
Average 0.2066 0.2812 0.1900 0.2123

Table 6. r comparison by station using four different methods at Beijing and XiangHe stations.
Station DT RR Parallel Serial

Beijing 0.9103 0.8593 0.9147 0.9217
XiangHe 0.9592 0.8701 0.9603 0.9411
Average 0.9348 0.8647 0.9375 0.9314

Table 7. PAR comparison by station using four different methods at Beijing and XiangHe stations.
Station DT RR Parallel Serial

Beijing 0.4958 0.4069 0.5836 0.5065
XiangHe 0.6780 0.3724 0.7404 0.5718
Average 0.5869 0.3897 0.6620 0.5392
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5. Conclusion

This paper proposes two frameworks to correct the MODIS AOD product using the RR
model. In the serial framework, we use the retrieved AOD from the DT algorithm as a
powerful feature for the RR model. In the parallel framework, the RR model is used to learn
the residual between the retrieved AOD from the DT algorithm and the ground-truth AOD.
The experimental results on ten aerosol sites demonstrate that the proposed two frame-
works can effectively correct the retrieval bias caused by the DT algorithm. Besides, the
serial framework exhibits superior performance than the parallel one in most cases, while
the parallel framework is more robust to surface types and seasons of observations.
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