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Graph Regularized Nonlinear Ridge Regression
for Remote Sensing Data Analysis
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Abstract—In this paper, a graph regularized nonlinear ridge
regression (RR) model is proposed for remote sensing data analy-
sis, including hyper-spectral image classification and atmospheric
aerosol retrieval. The RR is an efficient linear regression method,
especially in handling cases with a small number of training
samples or with correlated features. However, large amounts of
unlabeled samples exist in remote sensing data analysis. To suffi-
ciently explore the information in unlabeled samples, we propose
a graph regularized RR (GRR) method, where the vertices de-
note labeled or unlabeled samples and the edges represent the
similarities among different samples. A natural assumption is that
the predict values of neighboring samples are close to each other.
To further address the nonlinearly separable problem in remote
sensing data caused by the complex acquisition process as well as
the impacts of atmospheric and geometric distortions, we extend
the proposed GRR into a kernelized nonlinear regression method,
namely KGRR. To evaluate the proposed method, we apply it to
both classification and regression tasks and compare with rep-
resentative methods. The experimental results show that KGRR
can achieve favorable performance in terms of predictability and
computation time.

Index Terms—Atmospheric aerosol retrieval, feature selection,
graph regularization, hyperspectral image classification, kernel
extension, ridge regression (RR).

I. INTRODUCTION

CURRENT remote sensors can fully portray the earth sur-
face through tens of or even hundreds of contiguous and

narrow spectral bands. The resulting multispectral or hyperspec-
tral images capture rich information of land covers. Such high-
dimensional datasets pose many challenging problems. First,
with a limit number of training samples, the high-dimensional
remote sensing datasets easily lead to the well-known Huge phe-
nomenon. This means that, when the number of features exceeds
a threshold, the classification accuracy starts to decrease. Sec-
ond, high correlations exist in these high-dimensional datasets
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due to the dense sampling in spectral domain. These redundant
information may not improve the performance of models, but
increase computation and storage cost. Finally, complex atmo-
spheric transmission and interference makes some bands contain
less information or even be corrupted by noise.

Many approaches have been proposed to address the afore-
mentioned issues. One intuitive and effective preprocessing
method is dimensionality reduction [1]–[3]. However, most
of the existing dimensionality reduction methods ignore the
interaction with predictive models, leading to the suboptimal
features for the models. Another widely adopted method is to
employ a support vector machine (SVM) model [4]–[6] due to its
lower sensitivity to the curse of dimensionality and sparse rep-
resentation of the decision function as compared to traditional
models. Besides dimensionality reduction and SVM methods,
another promising scheme is regularization methods [7]–[9],
which incorporate feature selection or transformation as part of
the model training process. Generally, the objective function of
regularization methods consists of an approximate term and a
regularization term. With regard to the second term, researchers
proposed various methods, among which L1-norm [10]–[12]
and L2-norm [13]–[15] are two of the most popular ones. For
these two regularizations, the Lasso and ridge regression (RR)
are two representative models, respectively. The discussions in
[7] and [9] demonstrate that the prediction performance of the
Lasso is dominated by RR when there are high correlations
among features. From this point of view, RR is more suitable
for remote sensing data analysis than the Lasso.

In this paper, we focus on the regularization-based method,
particularly RR. It is a well-known multiple linear regression
technique by incorporating L2-norm regularization into the or-
dinary least square [16]. Due to its flexibility and simplicity, it
has been widely applied in various domains such as face recog-
nition [17], bioinformatics [18] and cheminformatics [19]. Re-
cently, some researchers attempted to employ the RR model
in biophysical parameter retrieval from remote sensing data
[20], [21]. In the field of remote sensing, there often exist large
amounts of unlabeled samples. To fully explore the wealth of
unlabeled samples, we propose a graph-based semisupervised
learning (SSL) model, namely graph regularized RR (GRR).
Specifically, we first construct an undirected and edge-weighted
graph, where the vertices denote labeled or unlabeled samples
and the edges represent the similarities among different samples.
Then, the graph information is incorporated into the original ob-
jective function of RR as a regularizer. Finally, considering that
most of remote sensing datasets are nonlinearly distributed, a
generalized kernel version of GRR (KGRR) is further derived.
It is worth noting that most of the existing graph-based SSL
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methods are evaluated on remote sensing image classification
[22]–[24], but the proposed method will be evaluated on both
classification and regression.

The rest of this paper is outlined as follows. Section II in-
troduces the proposed method in detail. Section III presents
the datasets used and the experimental results in both classi-
fication and regression problems, followed by the conclusion
in Section IV.

II. METHODOLOGY

Suppose given l labeled samples {xi ,yi}l
i=1 and u unlabeled

samples {xi}l+u
i= l+1 , with xi ∈ Rd where d is the dimension

of features. For classification problems, we adopt a 1-of-C en-
coding method, where C is the number of classes, to convert
the original label into a C-dimensional vector representation as
in [25] and [26]. In particular, if xi belongs to the jth class,
yij = 1; otherwise, yij = 0. For regression problems, we just
use the original labels, because it is impossible to encode con-
tinuous dependent variables. In matrix format, the training set
can be represented as Xt = [x1 ,x2 , . . . ,xl ]�, and the whole
dataset as X = [x1 , . . . ,xl , . . . ,xl+u ]�, where the superscript
� denotes the transpose of matrix.

A. GRR

The main idea of linear regression is to fit a function
f(x) = x�w + b such that the residual sum of square (loss
function) is minimized: (w∗, b∗) = arg minw ,b

∑l
i=1 ‖f(xi) −

yi‖2 [27]. For simplicity, we append a new element 1 to
each xi . Then, the coefficient b can be absorbed into w. Let
Yt = [y1 , . . . ,yl ]�, we can rewrite the loss function as a ma-
trix form w∗ = arg minw ‖Xtw − Yt‖2

F whose solution is
w∗ = (X�

t Xt)−1X�
t Yt . However, in many practical applica-

tions, the covariance matrix X�
t Xt is singular, because the fea-

tures are highly correlated with each other, or the number of
features is greater than that of samples. A popular solution is to
impose a penalty on the norm of w.

w∗ = arg min
w

‖Xtw − Yt‖2
F + α‖w‖2 (1)

where α is a regularization parameter. The solution of (1) is
w∗ = (X�

t Xt + αI)−1X�
t Yt , where I is a d × d identity ma-

trix. The term ‖w‖2 is called the Tikhonov regularizer [8]. In
statistics, this regularization method is called RR.

In the field of remote sensing, it is difficult or expensive
to acquire the ground-truth information. Taking atmospheric
aerosol retrieval as an example, the retrievals of ground-based
instruments are often used as a proxy of the true aerosol val-
ues [28]–[30]. There are only dozens of ground-based stations
in China, resulting in a limit number of ground truth. Besides,
the ground-based observations must match with the satellite ob-
servations in both time and space, which further reduces the
available ground truth. To address this issue, many approaches
have been proposed to fully exploit the rich information of un-
labeled samples. Graph model is an effective method by linking
labeled and unlabeled samples via vertices and edges. We thus
propose to introduce a graph-based regularization term into RR,

named as GRR. Suppose we build a graph G with l + u vertices,
where each vertex corresponds to a sample, and the similarity
between vertices i and j is denoted as Sij , then a symmetric
matrix S is derived whose element Sij is defined as

Sij =

⎧
⎪⎨

⎪⎩
e
−
‖xi − xj‖2

2

2σ2 , if xi ∈ Nk (xj ) or xj ∈ Nk (xi)

0, otherwise
(2)

where Nk (xj ) is the set of k-nearest neighbors of xj and σ is the
parameter of the Heat kernel. A natural assumption of the graph
regularizer is that nearby points in the graph G have similar
labels, which motivates the choice of the following quadratic
energy function:

f ∗ = arg min
f

l+u∑

i,j=1

‖f(xi) − f(xj )‖2Sij = arg min
f

f�Lf

(3)
where f = [f(x1), . . . , f(xl), . . . , f(xl+u )] and L is the graph
Laplacian matrix. Using some simple algebraic formulations,
we have L = D − S, where D is a diagonal matrix whose
entries equal to the column or row sum of S: Dii =

∑
j Sji .

Incorporating (3) into (1), the final objective function of
GRR is

w∗ = arg min
w

‖Xtw − Yt‖2
F + α‖w‖2 + βw�X�LXw.

(4)
Obviously, (4) is a convex function and has a global optimal
solution w∗ = (X�

t Xt + αI + βX�LX)−1X�
t Yt . It is worth

noting that RR is a special case of GRR when β equals to 0.

B. Kernelized GRR

GRR assumes that there exists a linear relation between X
and Y. However, nonlinearities are often exhibited in remote
sensing data due to the effects of multipath scattering, variations
in sun-canopy-sensor geometry, nonhomogeneous composition
of pixels, and attenuating properties of media [31]. To properly
fit the remote sensing data into the GRR scheme, we employ
kernel methods, which can effectively transform the data from a
nonlinear space into a linear space [32], [33]. Taking Fig. 1 as an
example, the original data points from two classes of the selected
image patch are linearly nonseparable in spectral feature space
due to overlapping areas. But after mapping them to another
higher dimensional space via kernel tricks, they can be linearly
separated. Thus, we further extend the proposed GRR into a
kernelized GRR as follows.

Kernel methods aim to project the data into a Hilbert space
H with very high or even infinite dimension, and then, perform
a linear algorithm in H. Given a nonlinear mapping function
φ(x) : Rd → H, the projected training set and the whole dataset
can be represented as φt = [φ(x1), φ(x2), . . . , φ(xl)]� and
φ = [φ(x1), . . . , φ(xl), . . . , φ(xl+u )]�, respectively. Besides,
according to representer theorem [32], w =

∑l
i=1 φ(xi)ai =

φ�
t A, where A = [a1 , . . . , ai , . . . , al ]�. Substituting them into
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Fig. 1. Illustration of kernel operator. (a) Color hyperspectral image over Pavia, northern Italy. (b) Original two-classes data distribution of the selected patch.
(c) Higher dimensional projection of the original data via Gaussian kernel.

(4), the objective function of KGRR is formulated as

A∗ = arg min
A

‖φtφ
�
t A − Yt‖2

F + αA�φtφ
�
t A

+ βA�φtφ
�Lφφ�

t A. (5)

Nonetheless, directly computing φ is nontrivial, but we can get
around it by calculating the dot product in high-dimensional
space via kernel trick, which can be expressed as K(xi ,xj ) =
〈φ(xi), φ(xj )〉, where the operator 〈·〉 means inner product, and
K(·) denotes kernel function. Therefore, we rewrite (5) as

A∗ = arg min
A

‖KtA − Yt‖2
F + αA�KtA + βA�KLK�A.

(6)
Let the derivative of L(A) with respect to A equal to
0, we get A∗ = (K�

t Kt + αKt + βKLK�)−1K�
t Yt . For

any unlabeled data point xj , its predicted value is f(xj ) =
∑l

i=1〈φ(xi), φ(xj )〉ai =
∑l

i=1 K(xi ,xj )ai .

III. EXPERIMENTS

We evaluate the proposed KGRR algorithm in two remote
sensing tasks: atmospheric aerosol retrieval and hyperspectral
image classification. As a regression problem in the first task,
the original values in the label vector remain unchanged. For the
classification problem in the latter task, we adopt a 1-of-C en-
coding method to convert the original label into a C-dimensional
vector representation.

A. Atmospheric Aerosol Retrieval

1) Datasets: Atmospheric aerosol retrieval can be addressed
as a regression problem to learn a mapping from multi-band
spectral values to aerosol parameters (e.g., aerosol optical depth
(AOD) in this paper). As in [28]–[30], we use Level 2.0
AERONET retrievals as the ground truth (targets). AERONET
is a global aerosol observing network with about 250 ground-
based instruments [34]. Most of these stations measure AOD
in different spectral bands centered around the nominal wave-
lengths of 340, 380, 440, 670 nm, and others [35]. To facilitate
intercomparisons with measurements from remote sensing data,
the AERONET retrievals are first interpolated to 550 nm using
the quadratic fit on log–log scale for all wavelengths [36]. For

Fig. 2. RMSE and standard deviations achieved by eight different methods
under different number of training samples on MODIS dataset. (a) Comparisons
among KGRR and four other methods. (b) Comparisons among KGRR, NN,
SVM and SSVM.

the inputs of the proposed algorithm, we use the spectral values
along all bands from the following two remote sensors.

The first is moderate resolution imaging spectroradiometer
(MODIS), which is a key instrument aboard the TERRA satel-
lite. With a single camera, MODIS observes the top-of-the-
atmosphere reflectance over 36 spectral bands between 410 nm
and 14 μm [37]. We obtain the MODIS Level-1B calibrated
radiance product MOD021KM with spatial resolution of 1 km
from the Beijing AERONET location between January 2002
and December 2014. Thereafter, Level 2.0 AERONET data are
collocated in space and time with MODIS data. The detailed
process can be found in [28]. We obtain a total of 843 spa-
tially and temporally collocated observations from MODIS and
AERONET.

The second sensor is multiangle imaging spectroradiometer
(MISR). The MISR is one of the five instruments mounted on
TERRA spacecraft. MISR consists of nine pushbroom cameras
arranged in different view angles relative to the earth’s surface.
Each camera covers 360-km wide swath and provides four spec-
tral bands in blue, green, red, and near infrared (NIR) that are
centered at 443, 555, 670, and 865 nm, respectively. The reso-
lution of all bands in nadir view and the red bands at all nine
angles is 275 m and the resolution of other bands is 1.1 km.
We download 1045 collocated MISR and AERONET data from
multisensor aerosol products sampling system [35], covering
the whole 23 stations at all available time in China.
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2) Experimental Setup: To demonstrate the superiority of
the proposed KGRR model on aerosol retrieval. We compare it
with the following seven methods: 1) the ordinary least-square
regression (OLS), which is a special case of GRR when set-
ting α = β = 0; 2) RR, which is also a special case of GRR
when setting β = 0; 3) GRR; 4) the operational satellite re-
trieval algorithms based on physical models, namely MOD and
MISR, respectively; 5) an SVM [30]; 6) neural network (NN)
[28]; and 7) the semisupervised SVM with graph-based kernel
(SSVM) proposed in [38]. For NN, the optimal number of hid-
den nodes is chosen from [2, 50] in steps of 5 via a fivefold
cross validation. For an SVM, we adopt the Gaussian kernel
since it usually achieves the best results compared to other ker-
nels. The optimal variance parameter σ for Gaussian kernel
and the regularization parameter C in SVM are both selected
from {10−3 , 10−2 , . . . , 103} via a fivefold cross validation. For
the two regularization parameters of GRR and KGRR, we also
choose them via a fivefold cross validation from the given set
{10−3 , 10−2 , . . . , 103}. Besides, the physical models attempt
to take into account numerous physical variables affecting the
radiometric characteristics of remote sensing data, such as at-
mospheric conditions, solar azimuth and zenith angles, sensor
azimuth, and zenith angles, etc. Complex mathematical formu-
lations are set up to represent the relationships between these
variables according to radiation transfer equation. To simplify
the radiative transfer calculations, a lookup table (LUT) is used
to simulate the radiative properties of the atmosphere calculated
for expected aerosol types at particular wavelengths, angles and
aerosol loading. Spectral reflectance from the LUT is then com-
pared with the satellite-observation value to find the best match,
and the corresponding AOT is the final retrieval result. In all
experiments, we randomly divide the whole dataset into two
groups: training set and testing set. The training set is used to
train all of the machine learning models, while the testing set
is used to evaluate the performance of each model. In order to
reduce the effects of random selection, all the algorithms are
repeated ten times and the average performance is reported.
Without loss of generality, we use two mainstream evaluation
metrics: the root-mean-square error (RMSE) and Pearson’s cor-
relation coefficient R, which are used to evaluate the accuracy
of the estimations and the goodness of fit, respectively.

3) Results and Discussion: For MODIS data, the RMSE and
standard deviations achieved by five different methods under
different numbers of training samples are shown in Fig. 2(a),
from which several conclusions can be drawn. First, RR is bet-
ter than OLS when 10% training samples are available, owing
to singular covariance matrix in OLS. However, when training
samples are more than 30%, the covariance matrix is nonsingu-
lar and the performance of OLS is close to RR. Second, KGRR
and GRR are better than RR and OLS all the time, because
they are able to take advantage of unlabeled samples, which
certifies the efficiency of graph regularization. Third, due to
the nonlinear distribution of data, KGRR yields the best results
especially when training samples are more than 30%. The last
but not the least, with the increasing number of training sam-
ples, RMSE values decrease for machine learning models, while
that is stable for the physical model. In particular, when there

Fig. 3. R and standard deviations achieved by eight different methods under
different number of training samples on MODIS dataset. (a) Comparisons among
KGRR and four other methods. (b) Comparisons among KGRR, NN, SVM and
SSVM.

Fig. 4. RMSE and standard deviations achieved by eight different methods
under different number of training samples on MISR dataset. (a) Comparisons
among KGRR and four other methods. (b) Comparisons among KGRR, NN,
SVM and SSVM.

Fig. 5. R and standard deviations achieved by eight different methods under
different number of training samples on MISR dataset. (a) Comparisons among
KGRR and four other methods. (b) Comparisons among KGRR, NN, SVM and
SSVM.

are small amounts of training samples (i.e., 10%), the physical
model gets a higher performance than machine learning mod-
els. On the contrary, given enough training samples (more than
30%), machine learning models significantly outperform the
physical model. This indicates that the performance of machine
learning methods depends on the number of training samples.
Similar conclusions can be drawn from another indicator in
Fig. 3(a). Besides, Figs. 2(b) and 3(b) demonstrate the compar-
ison results among KGRR and three popular machine learning
retrieval models: SVM, NN, and SSVM . The proposed KGRR
remarkably outperforms NN and is a little better than SVM and
SSVM. Nevertheless, KGRR is much faster than SVM under
the same number of training samples as shown in Fig. 6(a).
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Fig. 6. Computation time comparisons between KGRR and SVM on two
different datasets. (a) MODIS dataset. (b) MISR dataset.

Fig. 7. RMSE results of KGRR versus two regularization parameters on MISR
dataset. (a) β . (b) α.

For MISR data, Figs. 4 and 5 show RMSE and R values
obtained by eight different models, respectively. Similar con-
clusions can be drawn as on MODIS data, i.e., machine learn-
ing models perform much better than the physical model and
KGRR achieves the best results. Besides, Figs. 4(b), 5(b), and
6(b) demonstrate that KGRR can do as well as, if not better than
an SVM with much less time costs when training samples are
less than 50%.

4) Parameter Analysis: Two important parameters need to
be tuned in KGRR: the regularization parameters α and β. To
examine their effects on regression results, we conduct experi-
ments on the MISR dataset. For simplicity, we fix α when tune β
and vice versa. Fig. 7(a) demonstrates the RMSE results against
β. Obviously, the RMSE results decrease as β increases when β
is smaller than 10−1 . In contrast, when β is larger than 10−1 , the
RMSE results increase as β increases. Therefore, the optimal β
equals to 10−1 . Similarly, the RMSE results versus α is shown
in Fig. 7(b), which indicates that RMSE values are stable when
α is small while RMSE increases when α increases. Thus, the
best α is set to 10−3 .

B. Hyperspectral Image Classification

1) Datasets: To examine the efficiency of KGRR on remote
sensing image classification, we apply it to two hyperspectral
datasets acquired by different sensors. The first is Indian Pines
(IP) dataset, which was acquired by the AVIRIS sensor over the
Indian Pine test site in northwestern Indiana, USA, on June 12,
1992. The original dataset contains 224 spectral bands. But we
utilize 200 of them after removing four bands containing zero
values and 20 noisy bands affected by water absorption. The

spatial size of the image is 145 × 145 pixels, and the spatial
resolution is 20 m. The false-color composite image and the
ground-truth map are shown in Fig. 8(a) and (b). The avail-
able number of samples for each class shown in Table I ranges
largely from 20 to 2455, which makes the classification task
very difficult.

The second dataset is Pavia University Scene (PUS), which
was acquired by the ROSIS sensor during a flight campaign
over Pavia, northern Italy, on July 8, 2002. The original image
is recorded with 115 spectral channels ranging from 0.43 to
0.86 μm and covering the visible and infrared spectrum. The
utilized image contains 103 bands after removing noisy bands.
The image size is 610 × 340 pixels with a spatial resolution of
1.3 m. A false-color composite image and the ground-truth map
are shown in Fig. 8(c) and (d). In the ground-truth map, there are
nine classes of land covers with more than 1000 labeled pixels
for each class, which is listed in Table II.

2) Experimental Setup: To assess the performance of
KGRR. We compare it with OLS, RR, GRR, SVM, and semisu-
pervised SVM using the combination of Gaussian kernel and
cluster kernel (SVM_Cluster) proposed in [39]. For regression
models OLS, RR, GRR, and KGRR, we adopt the “winner-
takes-all” strategy for classification problem as in [25]. The
optimal regularization parameters α and β for GRR and KGRR
are both chosen from {10−3 , 10−2 , . . . , 103} via a fivefold cross
validation. For an SVM model, we exploit two different ker-
nels: linear kernel and Gaussian kernel. For sake of simplic-
ity, we represent them as SVM_Gaussian and SVM_linear, re-
spectively. The best variance parameter σ for Gaussian kernel
and regularization parameter C in SVM are both selected from
{10−3 , 10−2 , . . . , 103} via a fivefold cross validation. In all ex-
periments, we randomly select 1% samples from each class as
the training set and the rest as the testing set. The detailed num-
bers are demonstrated in Table I and Table II, respectively. In
order to reduce the effects of random selection, all algorithms
are repeated ten times and the average results are reported. The
classification performance is evaluated by the overall accuracy
(OA), the average accuracy (AA), the per-class accuracy, and
the Kappa coefficient κ. OA is defined by the ratio between
the number of correctly classified pixels to the total number of
pixels in the testing set. AA refers to the average of accuracies
in all classes, and κ is the percentage of agreement corrected
by the number of agreements that would be expected purely by
chance.

3) Results and Discussion: For IP dataset, the classifica-
tion results achieved by different models are demonstrated in
Table III, where bold fonts indicate the best results. From this
table, we observe that OLS does not work in the case with a
small number of training samples and high-dimensional input
features. This problem can be alleviated by adding a Tikhonow
regularizer to OLS, i.e., RR model. GRR is better than OLS
and RR, because it is able to exploit the wealth of unlabeled
samples. Nevertheless, it is inferior to SVM models, including
SVM_Gaussian and SVM_linear, in terms of OA and κ, and
superior to them in terms of AA. This can be explained by
that Gaussian kernel makes the data linearly separated in very
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Fig. 8. RGB composite images and ground-truth maps on two datasets. (a) and (b) IP dataset. (c) and (d) PUS dataset. (e) Class labels for different classes.

TABLE I
NUMBER OF PIXELS FOR TRAINING/TESTING AND THE TOTAL NUMBER OF PIXELS FOR EACH CLASS IN THE IP GROUND-TRUTH MAP

Class Sample Class Sample
Label Name Total Training Testing Label Name Total Training Testing

C1 Alfalfa 46 1 45 C9 Oats 20 1 19
C2 Corn-notill 1428 15 1413 C10 Soybean-notill 972 10 962
C3 Corn-mintill 830 9 821 C11 Soybean-mintill 2455 25 2430
C4 Corn 237 3 234 C12 Soybean-clean 593 6 587
C5 Grass-pasture 483 5 478 C13 Wheat 205 3 202
C6 Grass-trees 730 8 722 C14 Woods 1265 13 1252
C7 Grass-pasture-mowed 28 1 27 C15 Buildings-Grass-Trees-Drives 386 4 382
C8 Hay-windrowed 478 5 473 C16 Stone-Steel-Towers 93 1 92

TABLE II
NUMBER OF PIXELS FOR TRAINING/TESTING AND THE TOTAL NUMBER OF PIXELS FOR EACH CLASS IN THE PUS GROUND-TRUTH MAP

Class Sample Class Sample
Label Name Total Training Testing Label Name Total Training Testing

C1 Asphalt 6631 67 6564 C6 Bare Soil 5029 51 4978
C2 Meadows 18649 187 18462 C7 Bitumen 1330 14 1316
C3 Gravel 2099 21 2078 C8 Self-Blocking Bricks 3682 37 3645
C4 Trees 3064 31 3033 C9 Shadows 947 10 937
C5 Painted metal sheets 1345 14 1331

TABLE III
OA, AA, PER-CLASS ACCURACY (%), κ, AND STANDARD DEVIATION OF TEN RUNS ACHIEVED BY SEVEN METHODS ON IP DATASET

Label OLS RR GRR SVM_Gaussian SVM_Linear SVM_Cluster KGRR

C1 1.85 ± 4.01 13.59 ± 31.27 22.54 ± 41.16 17.05 ± 13.74 20.80 ± 19.29 25.79 ± 19.73 24.16 ± 16.87
C2 17.27 ± 6.09 48.51 ± 3.12 50.08 ± 3.67 49.11 ± 4.62 44.59 ± 5.34 42.81 ± 7.09 52.55 ± 4.76
C3 11.00 ± 5.67 32.94 ± 8.21 34.95 ± 9.49 47.99 ± 25.31 38.65 ± 15.49 49.96 ± 17.38 43.89 ± 8.93
C4 2.94 ± 1.94 25.13 ± 17.54 27.21 ± 16.93 27.44 ± 15.15 26.35 ± 12.71 32.66 ± 14.63 34.90 ± 8.53
C5 14.41 ± 12.29 67.67 ± 18.53 68.53 ± 19.01 43.87 ± 23.87 57.65 ± 23.88 72.85 ± 14.73 64.91±16.93
C6 24.43 ± 21.26 72.62 ± 5.27 71.75 ± 4.87 72.36 ± 8.69 71.86 ± 5.71 73.27 ± 4.43 71.78 ± 5.22
C7 0.34 ± 0.68 44.87 ± 37.74 48.33 ± 44.76 28.19 ± 20.89 31.66 ± 26.29 38.75 ± 34.08 43.82 ± 22.86
C8 23.53 ± 30.16 83.65 ± 3.65 83.38 ± 3.75 85.44 ± 3.84 84.38 ± 3.80 85.71 ± 5.89 85.30 ± 2.56
C9 0.32 ± 1.00 12.67 ± 17.13 17.29 ± 24.28 15.39 ± 21.64 16.55 ± 16.38 14.13 ± 9.01 27.80 ± 20.16
C10 11.19 ± 5.03 39.53 ± 5.16 41.79 ± 5.81 40.76 ± 18.21 41.38 ± 15.79 48.28 ± 5.77 46.76 ± 6.58
C11 22.66 ± 9.79 49.63 ± 2.17 49.68 ± 2.29 54.90 ± 7.13 58.66 ± 8.76 48.76 ± 9.14 58.68 ± 4.21
C12 10.29 ± 6.32 37.26 ± 3.37 39.10 ± 4.64 29.03 ± 15.98 39.34 ± 13.07 31.25 ± 11.27 37.36 ± 9.48
C13 17.27 ± 23.70 78.99 ± 9.38 80.19 ± 9.80 66.78 ± 24.71 75.07 ± 9.86 85.39 ± 9.11 75.76 ± 8.97
C14 26.59 ± 18.17 76.70 ± 3.79 77.55 ± 5.55 80.24 ± 5.59 81.52 ± 5.64 80.18 ± 6.47 81.01 ± 4.24
C15 5.95 ± 5.41 52.47 ± 15.98 51.33 ± 12.77 51.42 ± 18.06 41.50 ± 10.85 41.42 ± 16.13 51.23 ± 14.10
C16 0.43 ± 1.36 72.88 ± 38.87 73.97 ± 39.08 90.78 ± 26.89 90.84 ± 26.98 79.18 ± 41.79 90.92 ± 24.93
OA 13.43 ± 4.04 56.16 ± 1.22 57.16 ± 1.27 58.15 ± 2.18 57.33 ± 3.05 57.30 ± 3.91 59.91 ± 1.59
AA 11.91 ± 4.94 50.57 ± 2.47 52.35 ± 3.16 51.31 ± 5.88 50.04 ± 9.06 53.15 ± 7.43 55.67 ± 2.94
κ 2.82 ± 2.82 48.58 ± 1.48 49.30 ± 1.66 51.04 ± 3.38 50.73 ± 4.53 50.54 ± 5.39 53.80 ± 1.93
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Fig. 9. Classification maps of six different methods on IP dataset. (a) OLS. (b) RR. (c) GRR. (d) SVM_Gaussian. (e) SVM_Linear. (f) KGRR.

TABLE IV
OA, AA, PER-CLASS ACCURACY (%), κ, AND STANDARD DEVIATION OF TEN RUNS ACHIEVED BY SEVEN METHODS ON PUS DATA SET

Label OLS RR GRR SVM_Gaussian SVM_Linear SVM_Cluster KGRR

C1 59.17 ± 1.43 60.77 ± 1.29 61.13 ± 1.27 87.78 ± 2.76 84.95 ± 1.59 87.23 ± 3.36 88.05 ± 2.37
C2 80.92 ± 0.73 80.58 ± 0.46 79.58 ± 0.37 92.04 ± 1.41 89.99 ± 0.68 91.51 ± 0.67 91.21 ± 1.23
C3 56.95 ± 6.95 71.78 ± 6.79 78.35 ± 6.23 77.00 ± 4.50 75.18 ± 4.83 73.97 ± 3.06 75.91 ± 3.35
C4 91.62 ± 1.49 92.78 ± 1.61 92.47 ± 1.50 94.91 ± 2.04 91.97 ± 2.96 93.38 ± 3.50 96.44 ± 1.18
C5 100 ± 0 100 ± 0 100 ± 0 96.86 ± 1.68 96.33 ± 1.83 96.52 ± 2.69 98.53±1.18
C6 53.50 ± 2.85 64.67 ± 3.05 69.19 ± 4.35 86.48 ± 4.93 83.78 ± 4.78 86.11 ± 2.37 90.38 ± 2.79
C7 37.02 ± 7.01 49.36 ± 18.62 38.59 ± 27.27 77.64 ± 6.59 69.54 ± 7.32 78.33 ± 5.14 76.04 ± 5.55
C8 48.01 ± 2.44 54.26 ± 2.85 55.55 ± 3.15 79.65 ± 2.46 80.53 ± 2.38 79.61 ± 1.12 78.05 ± 1.56
C9 73.27 ± 10.81 90.09 ± 7.42 98.32 ± 4.24 99.96 ± 0.06 99.97 ± 0.05 99.04 ± 2.15 99.98 ± 0.05
OA 72.02 ± 0.75 74.15 ± 0.64 75.06 ± 0.57 89.01 ± 0.63 87.02 ± 0.78 88.53 ± 0.59 89.17 ± 0.65
AA 66.72 ± 1.78 73.81 ± 2.14 74.80 ± 3.41 88.03 ± 1.40 85.81 ± 1.14 87.30 ± 0.69 88.29 ± 0.76
κ 61.20 ± 1.02 63.86 ± 0.90 64.55 ± 0.80 85.29 ± 0.93 82.57 ± 1.01 83.78 ± 0.79 85.31 ± 0.83

Fig. 10. Classification maps of six different methods on PUS dataset. (a) OLS. (b) RR. (c) GRR. (d) SVM_Gaussian. (e) SVM_Linear. (f) KGRR.

high-dimensional space. For a similar reason, as a kernel version
of GRR, KGRR gets the best performance in terms of OA, AA,
and κ. Besides, it is worth noting that the semisupervised method
SVM_Cluster is inferior to SVM_Gaussian in terms of OA and
κ, but superior to SVM_Gaussian in terms of AA. This means
that some testing samples from the majority classes are misclas-
sified, because they can be easily grouped into their neighboring
clusters with a small number of samples during k-means cluster-
ing. Combining these improper clustering results with Gaussian
kernel will inevitably degrade the overall performance. On the
contrary, this problem does not exist in our proposed method,
thereby leading to higher performance than SVM_Cluster.
Fig. 9 shows the classification maps in one experiment
among ten runs, where different colors correspond to differ-
ent categories. These figures further verify the aforementioned
conclusions.

Fig. 11. OA of KGRR versus two different regularization parameters on IP
dataset. (a) β . (b) α.

For PUS dataset, Table IV reports the detailed classification
results. Compared to IP dataset, the land covers in this data are
easier to discriminate and the number of available samples is
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significantly larger, leading to much better classification results
than that on IP dataset. In particular, GRR achieves superior
performance than OLS as well as RR, and inferior performance
than SVM_Gaussian, SVM_linear, and SVM_Cluster in terms
of OA, AA, and κ. More importantly, as a nonlinear extension of
GRR, KGRR increases the OA from 87.02 to 89.17 compared
with SVM_linear and is slightly better than SVM_Gaussian
and SVM_Cluster. Fig. 10 demonstrates the classification maps,
which further certifies the efficiency of KGRR.

4) Parameter Analysis: Similar to retrieval task, we also
evaluate the effects of two regularization parameters α and β in
KGRR on classification results using IP dataset. First, we fix α
and check the effects of β. Fig. 11(a) shows that OA decreases
as β increases. Therefore, the best β is 10−3 . Then, we fix β
and alter α. Fig. 11(b) demonstrates that OA first increases, and
then, decreases as α increases. Obviously, the optimal α equals
to 10−1 .

IV. CONCLUSION

This paper proposed a graph regularized nonlinear RR model
KGRR for different remote sensing applications. Compared to
the widely used RR model, GRR can sufficiently exploit the
wealth of unlabeled samples, thereby improving the predictabil-
ity. Considering that most of remote sensing datasets are nonlin-
early separable, a kernel extension of GRR, namely KGRR, was
proposed. The basic idea is to map the original remote sensing
data into a very high-dimensional feature space, in which the
data can be linearly separated. To examine the effectiveness of
KGRR, we applied it to atmospheric aerosol retrieval and hyper-
spectral image classification tasks on four datasets acquired by
different sensors. The experimental results demonstrate that the
proposed method KGRR performs better than OLS, RR, GRR,
NN, SVM, SSVM, and SVM_Cluster. In addition, we also eval-
uated the influence of different regularization parameters α and
β in KGRR on the final performance.
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