A Note of an $O(n^3/\log n)$ Time Algorithm for All Pairs Shortest Paths*

Yijie Han
School of Computing and Engineering
University of Missouri at Kansas City
Kansas City, MO 64110
hanyij@umkc.edu

Abstract

We improve the all pairs shortest path algorithm given by Takaoka to time complexity $O(n^3/\log n)$. Our improvement is achieved by using a smaller table and therefore saves time for the algorithm. Keywords: Algorithms, complexity, graph algorithms, shortest path.

1 Introduction

Given an input directed graph G = (V, E), the all pairs shortest path problem (APSP) is to compute the shortest paths between all pairs of vertices of G assuming that edge costs are nonnegative real values. The APSP problem is a fundamental problem in computer science and has received considerable attention. Early algorithms such as Floyd's algorithm ([2], pp. 211-212) computes all pairs shortest paths in $O(n^3)$ time, where n is the number of vertices of the graph. Improved results show that all pairs shortest paths can be computed in $O(mn+n^2\log n)$ time [6], where m is the number of edges of the graph. Recently Pettie showed [10] an algorithm with time complexity of $O(mn+n^2\log\log n)$. There are also results for all pairs shortest paths for graphs with integer weights[7, 11, 14, 15]. Fredman gave the first subcubic algorithm [5] for all pairs shortest paths. His algorithm runs in $O(n^3(\log\log n/\log n)^{1/3})$ time. Later Takaoka improved the upper bounds for all pairs shortest paths to $O(n^3(\log\log n/\log n)^{1/2})$ [12]. Dobosiewicz [4] gave an upper bound of $O(n^3/(\log n)^{1/2})$ with extended operations such as normalization capability of floating point numbers in O(1) time. In 2004 we obtained an algorithm with time complexity $O(n^3(\log\log n/\log n)^{5/7})$ [8]. Later Takaoka obtained an algorithm with time $O(n^3\log\log n/\log n)$ [13] and Zwick gave an algorithm with time $O(n^3\sqrt{\log\log n}/\log n)$ [16].

^{*}Research supported in part by NSF grant 0310245.

In [13] Takaoka raised the question whether the factor $\log \log n$ can be removed from the time complexity of his algorithm. In this paper we show an algorithm with time complexity $O(n^3/\log n)$. This algorithm uses word length of $O(\log n \log \log n)$ bits and therefore is not directly comparable to Takaoka and Zwick's results [13, 16]. It only shows that if we use word length of $O(\log n)$ bits then our algorithm has the same time complexity as Takaoka's algorithm [13]. However, if we allow larger word length $(O(\log n \log \log n))$ bits) then we can do in $O(n^3/\log n)$ time.

We note that in 2005 Chan [3] first obtained an algorithm with time complexity $O(n^3/\log n)$. Chan's algorithm does not use tabulation and bit-wise parallelism. His algorithm also runs on a pointer machine. We were unaware of Chan's result [3] when we submitted this paper for publication. Since Chan published his result before us the result of $O(n^3/\log n)$ time should be fully attributed to Chan. We present this paper here only for the purpose of showing that we applied a technique different than Chan's [3] to achieve $O(n^3/\log n)$ time.

Very recently we have achieved $O(n^3(\log \log n/\log n)^{5/4})$ time complexity [9]. This is the currently best result for the all pairs shortest path problem. We gave reasons in [9] that this $O(n^3(\log \log n/\log n)^{5/4})$ time represents a intrinsic bound and shall be very difficult to improve on.

2 Computation by Table Lookup

In Takaoka's algorithm [13] a table T is needed for comparing r pairs of numbers $a_1, a_2, ..., a_r$ and $b_1, b_2, ..., b_r$, each of which is a positive integer $\leq 2m$, for r = l/2, l/4, l/8, ..., 1, to find out $c_1, c_2, ..., c_r$ where $c_i = a_i$ if $a_i < b_i$ and otherwise $c_i = b_i$. These numbers are very small and $a_1, a_2, ..., a_r, b_1, b_2, ..., b_r$ can be encoded into one integer. Takaoka's algorithm uses $\log l$ tables of total size $m^l(2m)^l = O(c^{l\log m})$ and requires $O(c^{l\log m})$ time to build the table, where c is a suitable constant. We build tables for the same purpose. Our tables use $O(c^{l\log m})$ space but only $O(c^l)$ entries need to be initialized and therefore our tables can be built in $O(c^l)$ time.

Initially there are l numbers. After the first round of comparison l/2 numbers remain, for each of these l/2 numbers we need a number with 2 possibilities to indicate the winner. After the i-th round of comparison $l/2^i$ numbers remain, for each of these $l/2^i$ numbers we need a number with 2^i possibilities to indicate the winner. Therefore for the i-th round, we need $l/2^i$ numbers each having i bits to indicate 2^i possibilities of the winner. Thus we use $li/2^i$ bits to indicate the winners. In the i-th round, there are $l/2^i$

numbers remain, each being $\leq 2m$ and therefore using $\log m + 1$ bits. The total number of bits used is therefore $O(l + l \log m)$. Thus tables of size $O(c^{l+l \log m}) = O(c^{l \log m})$ is needed.

However, we show that only $O(c^l)$ entries of the table needs to be initialized. When we encode a_j 's $(b_j$'s), $1 \le j \le r$, we concatenate the bits in a_j (b_j) but add one bit with value 0 at the most significant bit of each number. These added bits with 0 values are called test bits. Thus encoded number would become $0a_10a_20...0a_r0b_10b_2...0b_r$. Before we index into the lookup table we do some manipulation of the coded words. We extract $0b_10b_20...0b_r$ out into another word W_1 using a mask and then shift it so it aligns with $0a_10a_20...0a_r$. We then turn the test bits in the word W_0 containing $0a_10a_20...0a_r$ to 1's by ORing W_0 with M, where M is the mask $10^{\log m+1}10^{\log m+1}1...$ assuming that each a_j and b_j has $\log m+1$ bits, and get $W_0 = 1a_11a_21...1a_r$. We then do $W_2 = (W_0 - W_1)$ AND M, where AND is the bitwise and operation. Now all bits for a_j and b_j in W_2 are 0's except the test bit which could be 1 or 0. If the corresponding test bit is 1 then $a_j \ge b_j$ otherwise $a_j < b_j$. We then use W_2 to index into the lookup table. Here we omitted the fact that word W_0 and W_1 contain the at most l bits to identify the winners.

Therefore each of the $l/2^i$ numbers in the comparison in the *i*-th round uses $\log m + 1$ bits but with only 2 possibilities (test bit is either 0 or 1). Thus the table we construct uses $O(c^{l \log m})$ space but only $O(c^l)$ entries are used and therefore can be built in $O(c^l)$ time.

3 Improving the Time Complexity

Refer to section 7 of Takaoka's paper[13], one part of Takaoka's algorithm takes $O((m^3/l)\log m)$ time, another part takes $O(lm^2)$ time. To balance these two parts, l is set to $(m\log m)^{1/2}$. Instead of setting $m = \log^2 n/(\log^2 c \log \log n)$ in section 7 of Takaoka[13], we set $m = \log^2 n \log \log n/\log^2 c$. Then $l = (m\log m)^{1/2} = O(\log n \log \log n/\log c)$ and $l/\log l = O(\log n/\log c)$. Since our table construction takes $O(c^l)$ time and we substitute $l/\log l$ for l as did by Takaoka, we got O(n) time for constructing the table. The time complexity of the all pairs shortest path algorithm is $O(n^3(\log m/m)^{1/2})$ as analyzed by Takaoka. In our case this is $O(n^3/\log n)$. Therefore we have:

Theorem 1: All pairs shortest paths of directed graphs can be computed in $O(n^3/\log n)$ time.

References

- [1] A. V. Aho, J. E. Hopcroft, J. D. Ullman. The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
- [2] A. V. Aho, J. E. Hopcroft, J. D. Ullman. Data Structures and Algorithms, Addison-Wesley, Reading, MA, 1983.
- [3] T.M. Chan. All-pairs shortest paths with real weights in $O(n^3/\log n)$ time. Proc. 9th Workshop Algorithms Data Structures, Lecture Notes in Computer Science, Vol. 3608, 318-324(2005).
- [4] W. Dobosiewicz. A more efficient algorithm for min-plus multiplication. *Inter. J. Comput. Math.* **32**, 49-60(1990).
- [5] M. L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J. Computing 5, 83-89(1976).
- [6] M. L. Fredman, R. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34, 596-615, 1987.
- [7] Z. Galil, O. Margalit. All pairs shortest distances for graphs with small integer length edges. *Information and Computation*, 134, 103-139(1997).
- [8] Y. Han. Improved algorithms for all pairs shortest paths. *Information Processing Letters*, 91, 245-250(2004).
- [9] Y. Han. An $O(n^3(\log \log n/\log n)^{5/4})$ time algorithm for all pairs shortest paths. Proc. 14th Annual European Symposium on Algorithms (ESA'06), Lecture Notes in Computer Science 4168. 411-417(2006).
- [10] S. Pettie. A faster all-pairs shortest path algorithm for real-weighted sparse graphs. Proceedings of 29th International Colloquium on Automata, Languages, and Programming (ICALP'02), LNCS Vol. 2380, 85-97(2002).
- [11] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. *J. Comput. Syst. Sci.*, 51, 400-403(1995).

- [12] T. Takaoka. A new upper bound on the complexity of the all pairs shortest path problem. *Information Processing Letters* **43**, 195-199(1992).
- [13] T. Takaoka. An $O(n^3 \log \log n / \log n)$ time algorithm for the all-pairs shortest path problem. Information Processing Letters 96, 155-161(2005).
- [14] M. Thorup. Undirected single source shortest paths in linear time. *Proc. 38th IEEE Symposium on Foundations of Computer Science*, Miami Beach, Florida, 12-21(1997).
- [15] U. Zwick. All pairs shortest paths in weighted directed graphs exact and almost exact algorithms. Proc. 39th Annual IEEE Symposium on Foundations of Computer Science, Palo Alto, California, 310-319(1998).
- [16] U. Zwick. A slightly improved sub-cubic algorithm for the all pairs shortest paths problem. Proceedings of ISAAC 2004, Lecture Notes in Computer Science, Vol. 3341, Springer, Berlin, 921-932(2004).