
Deterministi
 Sorting in O(n log log n) Time and LinearSpa
e1Yijie HanS
hool of Interdis
iplinary Computing and EngineeringUniversity of Missouri at Kansas City5100 Ro
khill RoadKansas City, MO 64110hanyij�umk
.eduhttp://wel
ome.to/yijiehanAbstra
tWe present a fast deterministi
 algorithm for integer sorting in linear spa
e. Ouralgorithm sorts n integers in the range f0; 1; 2; :::;m�1g in linear spa
e in O(n log logn)time. This improves our previous result[8℄ whi
h sorts inO(n log log n log log logn) timeand linear spa
e. This also improves previous best deterministi
 sorting algorithm[3, 11℄whi
h sorts in O(n log log n) time but uses O(m�) spa
e. Our results
an also be
ompared with Thorup's previous result[16℄ whi
h sorts in O(n log log n) time andlinear spa
e but uses randomization.Keywords: Algorithms, sorting, integer sorting, time
omplexity, linear spa
e.1 Introdu
tionSorting is a
lassi
al problem whi
h has been studied by many resear
hers. Although the
omplexity for
omparison sorting is now well understood, the pi
ture for integer sorting isstill not
lear. The only known lower bound for integer sorting is the trivial
(n) bound.Continuous resear
h e�orts have been made by many resear
hers on integer sorting[2, 3, 6,7, 8, 9, 11, 12, 14, 15, 16℄. Re
ent advan
es in the design of algorithms for integers sortinghave resulted in fast algorithms[3, 11, 16℄. However, these algorithms use randomizationor superlinear spa
e. For sorting integers in f0; 1; :::; m � 1g O(m�) spa
e is used in thealgorithms reported in [3, 11℄. When m is large (say m =
(2n)) the spa
e used is ex
essive.Integer sorting using linear spa
e is therefore extensively studied by resear
hers. An earlierwork by Fredman and Willard[6℄ shows that n integers
an be sorted in O(n logn= log logn)time in linear spa
e. Raman[14℄ showed that sorting
an be done in O(nplogn log logn)time in linear spa
e. Later Andersson[2℄ improved the time bound to O(nplogn). ThenThorup[15℄ improved the time bound to O(n(log logn)2). Our previous results showed timeO(n(log logn)3=2) [9℄ and the previous best result of O(n log logn log log logn) [8℄. In this1Preliminary version of this paper has been presented at 2002 ACM Symposium on Theory of Computing(STOC'02). 1

paper we further improve upon previous results. We show that n integers in f0; 1; 2; :::; m�1g
an be sorted in O(n log logn) time in linear spa
e.Our result improves on time on the previous best linear spa
e sorting algorithm[8℄ whi
huses O(n log logn log log logn) time. Our result also improves on spa
e on the previousfastest deterministi
 sorting algorithm[3, 11℄ whi
h sorts in O(n log logn) time and O(m�)spa
e, where f0; 1; :::; m� 1g is the range of the integers. This previous result was obtainedindependently by Andersson et al. [3℄ and by Han and Shen[11℄. The spa
e used in theseprevious algorithms is a
tually O(m). But we may assume that spa
e is redu
ed to O(m�) byusing radix sorting. Our result
an also be
ompared with Thorup's result[16℄ whi
h sorts inO(n log logn) time and linear spa
e using randomization. However, although our algorithmdo not use randomization we use multipli
ation instru
tion in our algorithm while Thorup'salgorithm uses randomization but without using multipli
ation instru
tion.The te
hniques used in our algorithm in
lude
oordinated pass down of integers on theAndersson's exponential sear
h tree[2℄ and the linear time multi-dividing of the bits of in-tegers. Although we used multi-dividing te
hnique in our previous design[8℄, there multi-dividing takes nonlinear time and therefore is too slow. Our new multi-dividing
an only bea

omplished with
oordinated pass down of integers. Instead of inserting integers one at atime into the exponential sear
h tree we pass down all integers one level of the exponentialsear
h tree at a time. Su
h
oordinated passing down provides us the
han
e of performingmulti-dividing in linear time and therefore speeding up our algorithm.We would like to
omment on the
omplexity of O(n log logn). This bound was man-ifested as the best bound even for non-linear spa
e deterministi
 sorting. Andersson [2℄showed several algorithms for sorting, none of them
ould break the O(n log logn) bound.Even for very large integers Andersson showed time O(n(logn= log b + log logn)) where bis the word length(the number of bits in a word). Thus no matter how large the inte-ger is O(n log logn) time is needed in Andersson's algorithm. In
ontrast for very largeintegers its large word length
an be exploited in a randomized algorithm[3℄. Sin
e Ander-sson's exponential sear
h tree requires O(n log logn) time to balan
e, it would be unlikelythat any deterministi
 algorithm uses exponential sear
h tree approa
h
ould under
ut theO(n log logn) time
omplexity. As the time of O(n log logn) is the
onverge point for
ur-rently the best bound for linear spa
e sorting as demonstrated in this paper, for non-linearspa
e sorting as shown in [3, 11℄, and for a randomized linear spa
e sorting [16℄, it
an beviewed as we have rea
hed a milestone.Although O(n log logn) is a natural deterministi
 bound, re
ently Han and Thorup �ndthat this
omplexity
an be improved in a randomized setting. In [10℄ Han and Thorupobtained a randomized integer sorting algorithm whi
h sorts in O(nplog logn) time and2

linear spa
e.2 PreliminaryOur algorithm is built upon the
on
ept of Andersson's exponential sear
h tree[2℄. Anexponential sear
h tree of n leaves
onsists of a root r and n� exponential sear
h subtrees,0 < � < 1, ea
h having n1�� leaves and rooted at a
hild of r. Thus an exponential sear
htree has O(log logn) levels. Sorting is done by inserting integers into the exponential sear
htree. When imbalan
e happens in the tree rebalan
e needs to be done. In [2℄ Anderssonhas shown that rebalan
e takes O(n log logn) time when n integers are inserted into thetree. The dominating time is taken by the insertion. Andersson has shown that insertion
an be done in O(plogn) time. He inserts one integer into the exponential tree at a time.Thorup[15℄ �nds that by inserting integers in bat
hes the amortized time for insertion
an beredu
ed to O(log logn) for ea
h level of the tree. The size of one bat
h b at a node is de�nedby Thorup to be equal to the number of
hildren d of the node. In our previous design[8, 9℄we pass down d2 integers in a bat
h. We showed[8, 9℄ that we
an speed up
omputation bysu
h a s
heme.An integer sorting algorithm sorts n integers in f0; 1; :::; m� 1g is
alled a
onservativealgorithm[12℄ if the word length (the number of bits in a word) used in the algorithm isO(log(m+n)). It is
alled a non
onservative algorithm if the word length used is larger thanO(log(m + n)).One way to speed up sorting is to redu
e the number of bits in integers. After thenumber of bits is redu
ed we
an apply non
onservative sorting. If we are sorting integersin f0; 1; :::; m� 1g with word length k log(m+n) with k � 1 then we say that we are sortingwith non
onservative advantage k.We use the following notation. For a set S we let min(S) = minfaja 2 Sg and max(S) =maxfaja 2 Sg. For two sets S1; S2 we denote S1 < S2 if max(S1) � min(S2).One way to redu
e the number of bits in an integer is to use bise
tion (binary dividing)on the bits of the integer (it is sometimes
alled exponential range redu
tion). This idea was�rst invented by van Emde Boas et al. [4℄. In ea
h step, the number of remaining bits isredu
ed to half. Thus in log logm steps logm bits of the integers are redu
ed to
onstantnumber of bits. This s
heme, although very fast, requires a very large amount of memory. Itrequires O(m) memory
ells and therefore
annot be dire
tly exe
uted in linear spa
e (O(n)spa
e). Andersson[2℄ invented the exponential sear
h tree and he used perfe
t hashing toredu
e the spa
e to linear. He
an store only one integer into a word and then applies thehash fun
tion. To speed up the algorithm for sorting, we need to pa
k several integers into3

one word and then to use
onstant number of steps to a

omplish the hashing for all integersstored in the word. In order to a
hieve this we relax the demand of perfe
t hashing. Wedo not demand n integers to be hashed into a table of size O(n) without any
ollision. Ahash fun
tion hashes n integers into a table of size O(n2) in
onstant time and without
ollision suÆ
e for us. Therefore we use the improved version of the hashing fun
tion givenby Dietzfelbinger et al. [5℄ and Raman[14℄ as shown in the following Lemma.Let b � 0 be an integer and let U = f0; :::; 2b� 1g. The
lass Hb;s of hash fun
tions fromU to f0; :::; 2s � 1g is de�ned as Hb;s = fhaj0 < a < 2b, and a is odd g and for all x 2 U :ha(x) = (ax mod 2b) div 2b�sLemma 1(Lemma 9 in [14℄): Given integer b � s � 0 and T � f0; :::; 2b � 1g withjT j = n, and t � 2�s+1 n2 !, a fun
tion ha 2 Hb;s
an be
hosen in O(n2b) time su
h thatthe number of
ollisions
oll(ha; T) � t.Take s = 2 logn we obtain a hash fun
tion ha whi
h hashes n integers in U into a tableof size O(n2) without any
ollision. Obviously ha(x)
an be
omputed for any given x in
onstant time. If we pa
k several integers into one word and have these integers properlyseparated with several bits of 0's we
an safely apply ha to the whole word and the resultis that hashing values for all integers in the word have been
omputed. Note that this ispossible be
ause only the
omputation of a multipli
ation, mod 2b and div 2b�s is involvedin
omputing a hash value.Andersson et al. [3℄ used a randomized version of a hash fun
tion in H be
ause they
ould not a�ord to
onstru
t the fun
tion deterministi
ally.A problem with Raman's hash fun
tion is that it takes O(n2b) time to �nd the right hashfun
tion. Here b is the number of the bits in an integer. What we needed is a hash fun
tionwhi
h
an be found in O(n
) time for a
onstant
 be
ause this is needed in the exponentialsear
h tree [2, 14℄. Obviously Raman's hash fun
tion does not satisfy this
riterion when bis large. However, Andersson's result[2℄ says that n integers
an be sorted in linear spa
ein O(n(logn= log b + log logn)) time. Thus if b > n we simply use Andersson's sortingalgorithm to sort in O(n log logn) time. Thus the only situation we have to
onsider isb � n. Fortunately for this range of b O(n2b) = O(n3). Therefore we
an assume the righthash fun
tion
an be found in O(n3) time.Note that although the hash table has size O(n2) it does not a�e
t our linear spa
e
laimbe
ause we do not use hash value to index into a table. Hashing is only used to serve thepurpose of redu
ing the number of bits in an integer.We will use signature sorting[3℄ in our algorithm. Signature sorting works as follows.4

Suppose that n integers have to be sorted and ea
h integer has logm bits. We view thatea
h integer has h segments with ea
h segment
ontaining logm=h bits. Now we applyhashing to ea
h and every segment in ea
h integer and we get 2h logn bits of hashed valuesfor ea
h integer. After sorting on hashed values for all integers the original sorting problem(of sorting n integers of logm bits ea
h)
an be transformed to the sorting problem of sortingn integers of logm=h bits ea
h.We will also study the following partitioning problem. Let a1; a2; :::; ap be p integers andS is a set of integers. We intend to partitioning S into p+1 sets as S0 < fa1g < S1 < fa2g <::: < fapg < Sp. Be
ause we use signature sorting, before we do the above partitioning wewill partition the bits in ai into h segments and take some of these h segments. We will alsopartition bits for ea
h integer in S into h segment and take one segment and dis
ard othersegments. For ea
h ai we essentially take all the h segments. However, the
orrespondingsegments of ai and aj may be identi
al. In this
ase we just need one of them. The segment wetake for an integer in S is the segment whi
h \bran
hes out" of ai's. We therefore transformthe original partitioning problem into several partitioning problems with integers of logm=hbits. In Fig. 1 we show that a1 = 3, a2 = 5, a3 = 7, a4 = 10, S = f1; 4; 6; 8; 9; 13; 14g.We partition ea
h integer into 2 segments. From a1 = 3 we obtain upper segment 0, lowersegment 3. From a2 = 5 we obtain upper segment 1 and lower segment 1. From a3 = 7we obtain upper segment 1 and lower segment 3. From a4 = 10 we obtain upper segment2 and lower segment 2. For 1 2 S we obtain lower segment 1 be
ause it bran
hes out froma1 = 3 in the lower segment. For 4 2 S we obtain lower segment 0. For 8 2 S we obtainlower segment of 0. For 9 2 S we obtain lower segment of 1. For 13 2 S we obtain uppersegment of 3. For 14 2 S we obtain upper segment of 3. Now all upper segments form onenew partitioning problem. The lower segments of 1 and 3 Form a new partitioning problem.The lower segments of 4,5,6,7 form a new partitioning problem. The lower segments of 8, 9,10 form a new partitioning problem. Therefore we now have 4 partitioning problems.3 Sorting on Small IntegersIn this and the next se
tion we will show how the following Lemma 2 is proved. The
ontentsof this and next se
tion have appeared in [8℄. We in
lude a modi�ed version of them herefor the
ompleteness of this paper.Lemma 2: n integers
an be sorted into pn sets S1; S2; :::; Spn su
h that ea
h set has pnintegers and Si < Sj if i < j, in time O(n log logn= log k) and linear spa
e with non
onser-vative advantage k log logn.In integer sorting we often pa
k several small integers into one word. We always assume5

0 1 2 3 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4

4 5

5 6 7

0 1 2 3

0 1

0

Fig. 1. Set partitioning. The numbers in
ir
les are partitioning integers.The numbers in squares are integers in set S.that all the integers pa
ked in a word use the same number of bits. Suppose g integersea
h having l bits are pa
ked into one word. By using the test bit te
hnique [1, 3℄ we
ando a pairwise
omparison of the
orresponding integers in two words and extra
t the largerintegers into one word and smaller integers into another word in
onstant time. Thereforeby adapting well-known sele
tion algorithms we obtain the following lemma:Lemma 3: Sele
ting the s-th largest integer among the n integers pa
ked into n=g words
an be done in O(n log g=g) time and O(n=g) spa
e. In parti
ular the median
an be foundin O(n log g=g) time and O(n=g) spa
e.Proof: Sin
e we
an do pairwise
omparison of g integers in one word with g integers inanother word and extra
t the larger integers in one word and smaller integers in anotherword in
onstant time, we
an extra
t the medians of the 1st, 2nd, ... g-th integer of 5words into one word in
onstant time. Thus the set S of medians are now
ontained inn=(5g) words. Re
ursively �nd the median m in S. Use m to eliminate at lease n=4 integersamong the n integers. Then pa
k the remaining integers in n=g words into 3n=(4g) words(the pa
king in
urs the fa
tor log g in the time
omplexity) and then re
urse. Pa
king
anbe done by the pa
king algorithm in Leighton[13℄ (Se
tion 3.4.3). 2Now
onsider sorting small integers. Let g integers be pa
ked in one word. We say thatthe ng integers in n words are sorted if gi-th to (g(i+1)� 1)-th smallest integers are sorted6

and pa
ked in the i-th word, 0 � i < n. We have the following lemma:Lemma 4: If g integers using a total of (logn)=2 bits are pa
ked into one word, then the nintegers in n=g words
an be sorted in O((n=g) logg) time and O(n=g) spa
e.Proof: Be
ause only (logn)=2 bits are used in ea
h word to store g integers we
an usebu
ket sorting to sort all words by treating ea
h word as one integer and this takes O(n=g)time and spa
e. Be
ause only (logn)=2 bits are used in ea
h word there are only pn patternsfor all the words. We then put g < (logn)=2 words with the same pattern into one group.For ea
h pattern there are at most g� 1 words left whi
h
annot form a group. Therefore atmost pn � (g� 1) words
annot form groups. For ea
h group we move the i-th integer in allg words into one word. That is, we take g g-integer ve
tors and produ
e g g-integer ve
torswhere the i's ve
tor
ontains i-th integer from ea
h input ve
tor. This transpose operation
an be done with Lemma 5.4 in Thorup[16℄ in time O(g log g) and spa
e O(g). Therefore forall groups it takes O((n=g) logg) time and O(n=g) spa
e.For the words not in a group (there are at mostpn�(g�1) of them) we simply disassemblethe words and then reassemble the words. This will take no more than O(n=g) time andspa
e. After all these are done we then use bu
ket sorting again to sort the n words. Thiswill have all the integers sorted. 2Note that when g = O(logn) we are sorting O(n) integers pa
ked in n=g words inO((n=g) log logn) time and O(n=g) spa
e. Therefore the saving is
onsiderable.Lemma 5: Assume that ea
h word has logm > logn bits, that g integers ea
h having(logm)=g bits are pa
ked into one word, that ea
h integer has a label
ontaining (logn)=(2g)bits, and that the g labels are pa
ked into one word the same way as integers are pa
kedinto words (that is, if integer a is pa
ked as the s-th integer in the t-th word then the labelfor a is pa
ked as the s-th label in the t-th word for labels), then n integers in n=g words
an be sorted by their labels in O((n log logn)=g) time and O(n=g) spa
e.Proof: The words for labels
an be sorted by bu
ket sorting be
ause ea
h word uses (logn)=2bits. The sorting will group words for integers into groups as in Lemma 4. We
an transposeea
h group of words for integers. 2Note also that the sorting algorithm given in Lemma 4 and Lemma 5 are not stable.As will be seen that sorting algorithms built on them
an be made stable by using the wellknown method of appending the address bits to ea
h input integer.If we have larger word length the sorting
an be done faster as shown in the followinglemma.Lemma 6: Assume that ea
h word has logm log logn > logn bits, that g integers ea
hhaving (logm)=g bits are pa
ked into one word, that ea
h integer has a label
ontaining(logn)=(2g) bits, and that the g labels are pa
ked into one word the same way as integers7

are pa
ked into words, then n integers in n=g words
an be sorted by their labels in O(n=g)time and O(n=g) spa
e.Proof: Note that although word length is logm log logn only logm bits are used for storingpa
ked integers. As in Lemmas 4 and 5 we sort the words
ontaining pa
ked labels by bu
ketsorting. In order to transpose words of integers we put g log logn words of integers into onegroup instead of putting g words of integers into one group. To transpose the integers ina group
ontaining g log logn words we �rst further pa
k g log logn words into g words bypa
king log logn words of integers into one word. We then do transpose on the g words.Thus transpose takes only O(g log logn) time for ea
h group and O(n=g) time for all integers.After �nishing transpose we then unpa
k the integers in the g words into g log logn words.2 Note also if the word length is logm log logn and only logm bits are used to pa
k g � lognintegers into one word. Then the sele
tion in Lemma 3
an be done in O(n=g) time andspa
e be
ause the pa
king in the proof of Lemma 3
an now be done in O(n=g) time.4 Sort n integers into pn setsConsider the problem of sorting n integers in f0; 1; :::; m � 1g into pn sets as given inLemma 2. We assume that ea
h word has k log logn logm bits and stores an integer oflogm bits. Therefore the non
onservative advantage is k log logn. We also assume thatlogm � logn log logn. Otherwise we
an use radix sorting to sort in O(n log logn) time andlinear spa
e. We divide the logm bits used for representing ea
h integer into logn blo
ks.Ea
h blo
k thus
ontains at least log logn bits. The i-th blo
k
ontaining (i logm= logn)-thto ((i + 1) logm= logn � 1)-th bits. Bits are
ounted from the least signi�
ant bit startingat 0. We now give a 2 logn stage algorithm whi
h works as follows.In ea
h stage we work on one blo
k of bits. We
all these blo
ks small integers be
auseea
h small integer now
ontains only logm= logn bits. Ea
h integer is represented by and
orresponds to a small integer whi
h we are working on. Consider the 0-th stage whi
h workson the most signi�
ant blo
k (the (logn� 1)-th blo
k). Assume that the bits in these smallintegers are pa
ked into n= logn words with logn small integers pa
ked into one word. Forthe moment we ignore the time needed for pa
king these small integers into n= logn wordsand assume that this is done for free. By Lemma 3 we
an �nd the median of these n smallintegers in O(n= logn) time(note that we have at least log logn non
onservative advantage)and O(n= logn) spa
e. Let a be the median found. Then n small integers
an be dividedinto at most three sets S1; S2, and S3. S1
ontains small integers whi
h are less than a. S2
ontains small integers whi
h are equal to a. S3
ontains small integers whi
h are greater8

than a. We also have jS1j � n=2 and jS3j � n=2. Although jS2j
ould be larger than n=2all small integers in S2 are equal. Let S 02 be the set of integers whose most signi�
ant blo
kis in S2. Then we
an eliminate logm= logn bits (the most signi�
ant blo
k) from ea
hinteger in S 02 from further
onsideration. Thus after one stage ea
h integer is either in aset whose size is at most half of the size of the set at the beginning of the stage, or oneblo
k of bits (logm= logn bits) of the integer
an be eliminated from further
omputation.Be
ause there are only logn blo
ks in ea
h integer, ea
h integer takes at most logn stagesto eliminate blo
ks of bits. An integer
an be put in a half sized set for at most logn times.Therefore after 2 logn stages all integers are sorted. Be
ause in ea
h stage we are dealingwith only n= logn words, if we ignore the time needed for pa
king small integers into wordsand for moving small integers to the right set then the remaining time
omplexity will beO(n) be
ause there are only 2 logn stages.The subtle part of the algorithm is how to move small integers into the set where the
or-responding integer belongs after previous set dividing operations of our algorithm. Supposethat n integers have already been divided into e sets. We
an use log e bits to label ea
h set.We wish to apply Lemma 6. Sin
e the total label size in ea
h word has to be logn=2, and ea
hlabel uses log e bits, the number g of labels in ea
h word has to be at most logn=(2 log e).Further, sin
e g = logn=(2 log e) small integers should �t in a word, and ea
h word
ontainsk log logn logn blo
ks, ea
h small integer
an
ontain O(k logn=g) = O(k log e) blo
ks. Notethat we reserve log logn non
onservative advantage for the purpose of being used in Lemma6. Thus we assume that (logn)=(2 log e) small integers ea
h
ontaining k log e
ontinuousblo
ks of an integer are pa
ked into one word. For ea
h small integer we use a label of log ebits indi
ating whi
h set it belongs. Assume that the labels are also pa
ked into words thesame way as the small integers are pa
ked into words with (logn)=(2 log e) labels pa
kedinto one word. Thus if small integer a is pa
ked as the s-th small integer in the t-th wordthen the label for a is pa
ked as the s-th label in the t-th word for labels. Note that we
annot disassemble the small integers from the words and then move them be
ause this willin
ur O(n) time. Be
ause ea
h word for labels
ontains (logn)=(2 log e) labels therefore only(logn)=2 bits are used for ea
h su
h word. Thus Lemma 6
an be applied here to move thesmall integers into the sets they belong to. Be
ause only O((n log e)= logn) words are usedthe time
omplexity for moving small integers to their sets is O((n log e)= logn).Note that O(k log e) blo
ks for ea
h small integer is the most number of bits we
an movein applying Lemma 6 be
ause ea
h word has k log logn logm bits and we want to reservelog logn non
onservative advantage. Note also that the moving pro
ess is not stable as thesorting algorithm in Lemma 6 is not stable.With su
h a moving s
heme we immediately fa
e the following problem. If integer a is9

the i-th member of a set S. That is, a blo
k of a (
all it a0) is listed as the i-th (small)integer in S. When we use the above s
heme to move the next several blo
ks of a (
all it a00)into S, a00 is merely moved into a position in set S, but not ne
essarily to the i-th position(the position where a0 lo
ates). If the value of the blo
k for a0 is identi
al for all integers inS that does not
reate problem be
ause that blo
k is identi
al no matter whi
h position inS a00 is moved to. If the value of the blo
k for a0 is not identi
al for all integers in S thenwe have problem
ontinuing the sorting pro
ess. What we do is the following. At ea
h stagethe integers in one set works on a
ommon blo
k whi
h is
alled the
urrent blo
k of theset. The blo
ks whi
h pre
ede the
urrent blo
k
ontain more signi�
ant bits of the integerand are identi
al for all integers in the set. When we are moving more bits into the set wemove the following blo
ks together with the
urrent blo
k into the set. That is, in the abovemoving pro
ess we assume the most signi�
ant blo
k among the k log e
ontinuous blo
ks isthe
urrent blo
k. Thus after we move these k log e blo
ks into the set we delete the original
urrent blo
k be
ause we know that the k log e blo
ks are moved into the
orre
t set andthat where the original
urrent blo
k lo
ates is not important be
ause that
urrent blo
k is
ontained in the k log e blo
ks.Another problem we would like to mention is that the size of the sets after several stagesof dividing will be
ome small. The s
heme of Lemmas 4, 5 and 6 relies on the fa
t that thesize of the set is not very small. Sin
e we are sorting a set of size n to sets of size pn weshould have no problem. If we want to use our s
heme to sort the whole input set we
anuse a re
ursion to keep sorting input set into smaller sets. The details of this
an be foundin [8℄.Below is our sorting algorithm whi
h is used to sort integers into sets of size pn. Thisalgorithm uses yet another re
ursion (do not
onfuse this re
ursion with the re
ursion men-tioned in the above paragraph).Algorithm Sort(k log logn; level; a0; a1; :::; at)/* k log logn is the non
onservative advantage. ai's are the input integers in a set to besorted. level is the re
ursion level. */1. if level = 1 then examine the size of the set (i.e. t). If the size of the set is less thanor equal to pn then return. Otherwise use the
urrent blo
k to divide the set into at mostthree sets by using Lemma 3 to �nd the median and then using Lemma 6 to sort. For theset all of its elements are equal to the median eliminate the
urrent blo
k and note the nextblo
k to be
ome the
urrent blo
k. Create a label whi
h is the set number (0, 1 or 2 be
ausethe set is divided into at most three sets) for ea
h integers. Then reverse the
omputation toroute the label for ea
h integer ba
k to the position where the integer lo
ated in the input10

to the pro
edure
all. Also route a number (a 2 bit number) for ea
h integer indi
ating the
urrent blo
k ba
k to the lo
ation of the integer. Return.2.for u = 1 to k do:begin2.1. Pa
k a(v)i 's into a fra
tion of 1=k-th of the number of words, where a(v)i
ontains several
ontiguous blo
ks whi
h
onsist of 1=k-th of the bits in ai and has the
urrent blo
kas its most signi�
ant blo
k.2.2. Call Sort(k log logn; level � 1; a(v)0 ; a(v)1 ; :::; a(v)t). /*When the algorithm returns fromthis re
ursive
all the label for ea
h integer indi
ating the set the integer belongsis already routed ba
k to the position where the integer lo
ates in the input of thepro
edure
all. A number having at most the number of bits in ai indi
ating the
urrent blo
k in ai is also routed ba
k to ai. */2.3. Route ai's to their sets by using Lemma 6.endNote that when the re
ursive
all at step 2.2. returns the number of eliminated bits indi�erent sets
ould be di�erent. For the subsequent re
ursive
alls to
ontinue we have topa
k a(v)i 's, namely we have to extra
t a segment whi
h has the
urrent blo
k as its mostsigni�
ant blo
k. Also note that sin
e we have non
onservative advantage k we
an movethe whole ai in step 2.3.We let a blo
k
ontain (4 logm)= logn bits. Then if we
all Sort(k log logn; logk((logn)=4),a0; a1; :::; an�1) where ai's are the input integers, (logn)=4
alls to the level 1 pro
edure will beexe
uted. This
ould split the input set into 3(log n)=4 sets. And therefore we need log 3(log n)=4bits to represent/index ea
h set. We
all Sort several times as below:Algorithm IterateSortCall Sort(k log logn; logk((logn)=4); a0; a1; :::; an�1);for j = 1 to 5 dobeginMove ai to its set by bu
ket sorting be
ause there are only about pn sets;For ea
h set S = fai0; ai1 ; :::; aitg if t > pn then
all Sort(k log logn; logk((logn)=4),ai0 ; ai1 ; :::; ait);end 11

Then (3=2) logn
alls to the level 1 pro
edure are exe
uted. Blo
ks
an be eliminated atmost logn times. The other (1=2) logn
alls are suÆ
ient to partition the input set of sizen into sets of size no larger than pn.At level j we use only n=klogk((log n)=4)�j words to store small integers. Ea
h
all to the Sortpro
edure involves a sorting on labels and a transposition of pa
ked integers (use Lemma6) and therefore uses linear time in terms of the number of words used. Thus the time
omplexity of algorithm Sort is:T (level) = kT (level � 1) +
n=klogk((log n)=4)�level; (1)T (0) = 0.where
 is a
onstant. Thus T (logk((logn)=4))= O(n log logn= log k).We have thus proved Lemma 2.5 Sorting in O(n log log n) Time and Linear Spa
eFor sorting n integers in the range f0; 1; 2; :::; m� 1g we assume that the word length usedin our
onservative algorithm is O(log(m + n)). The same assumption is made in previousdesigns [2, 6, 8, 9, 14, 15℄. In integer sorting we often pa
k several small integers into oneword. We always assume that all the integers pa
ked in a word use the same number of bits.We take 1=� = 5 in Andersson's exponential sear
h tree. Thus the root has n1=5
hildrenand ea
h exponential sear
h tree rooted at a
hild of the root has n4=5 leaves.In Andersson's exponential sear
h tree[2℄, integers are inserted (passed down) into thetree one at a time. Thorup[15℄ suggested to pass down d integers at a time, where d is thenumber of
hildren of the node in the tree where integers are to be passed down. In ourprevious design[8, 9℄ we passed down d2 integers at a time. Here we will sti
k with thiss
heme, namely passing down d2 integers at a time. What is di�erent from our previousdesign is that we will not pass down the d2 integers all the way down the tree. Instead wewill pass down one level of the tree d2 integer at a time until all integers are passed downone level. Thus at the root we pass down n2=5 integers at a time to the next level. Afterwe have passed down all integers to the next level we essentially partitioned integers intot1 = n1=5 sets S1; S2; :::; St1 with ea
h Si
ontaining n4=5 integers and Si < Sj if i < j. Wethen take n 45 � 25 integers from ea
h Si at a time and
oordinate them to be passed down tothe next level of the exponential tree. We repeat this until all integers are passed down tothe next level. At this time we have partitioned integers into t2 = n1=5 � n4=25 = n9=25 setsT1; T2; :::; Tt2 with ea
h set
ontaining n16=25 integers and Ti < Tj if i < j. Now we are ready12

to pass integers down to the next level in the exponential sear
h tree.It should not be diÆ
ult to see that the tree balan
e operation takes O(n log logn) timewith O(n) time for ea
h level. This is the same as in the original exponential sear
h treeproposed by Andersson[2℄. For example, at the root we �rst take n1=5 integers and sort themby
omparison sorting. This builds one level of the exponential sear
h tree. We then startto pass integers down the level. If the number of integers at a
hild ex
eeds 2n4=5 we splitthe node into two nodes. Thus at the end of this passing down we end up with at most2n1=5
hildren for the root. We then regroup them to form exa
tly n1=5 sets S1; S2; :::; St1 asmentioned above.We shall number the levels of the exponential sear
h tree top down so that root is at level0. Now
onsider the passing down at level s. Here we have t = n1�(4=5)s sets U1; U2; :::; Utwith ea
h set
ontaining n(4=5)s integers and Ui < Uj if i < j. Be
ause ea
h node at thislevel has p = n(1=5)(4=5)s
hildren at level s+ 1 we will pass down q = n(2=5)(4=5)s integers forea
h set, or a total of qt � n2=5 integers for all sets, at a time.The pass down
an be viewed as sorting q integers in ea
h set together with the p integersa1; a2; :::; ap in the exponential sear
h tree so that these q integers are partitioned into p+ 1sets S0; S1; :::; Sp su
h that S0 < fa1g < S1 < fa2g < ::: < fapg < Sp.Sin
e we do not have to totally sort the q integers and q = p2. A temptation is to useLemma 2 to sort. For that we need non
onservative advantage whi
h we will derive below.We will use linear timed multi-dividing te
hnique to a

omplish this.In Se
tion 7 of [8℄ it is shown that sorting the integers down the exponential sear
h treetakes no more than O(nplog logn) time per level. Therefore we assume we have alreadysorted to level l = 2 log log logn and we are
onsidering the sorting down the levels greaterthan 2 log log logn.We use signature sorting[3℄ to a

omplish multi-dividing. We adapt signature sorting towork for us as follows. Suppose we have a set T of p integers already sorted as a1; a2; :::; apand we wish to use the integers in T to partition a set S of q integers b1; b2; :::; bq to p+1 setsS0; S1; :::Sp su
h that S0 < fa1g < S1 < ::: < fapg < Sp. We will
all this as partitioningq integers by p integers. Let h = logn=(
 log p) for a
onstant
 > 1. h= log logn log p-bitintegers
an be stored in one word su
h that ea
h word
ontains only (logn)=(
 log logn) bits.We �rst view the bits in ea
h ai and ea
h bi as of h= log logn segments of equal length. Weview ea
h segment as an integer. To gain non
onservative advantage for sorting we hash theintegers in these words (ai's and bi's) to get h= log logn hashed values in one word. In order tohave intermediate values in the
omputing of hash values do not interfere between adja
entsegments we
an separate even and odd segments into two words by applying a suitablemask. We then
ompute hash values for the two words and then
ombine the hashed values13

of these two words into one. Let a0i be the hashed word
orresponding to ai and b0i be thehashed word
orresponding to bi. Note that the hashed values total has (2 logn)=(
 log logn)bits. However, these hashed values are separated into h= log logn segments in ea
h words.There are \null spa
es" between two adja
ent segments. We
an set these \null spa
es" to 0'sby applying a mask. We �rst pa
k all segments into (2 logn)=(
 log logn) bits(details below,the log logn in the denominator is needed for this purpose). Now we view ea
h hashed wordas an integer and sort all these hashed words (this sorting whi
h takes linear time will bedes
ribed in detail below). After this sorting the bits in ai and bi are
ut to (log logn=h)-th.Thus we have additional multipli
ative advantage of h= log logn.After repeating the above pro
ess g times we gain non
onservative advantage of (h= log logn)gwhile we expend only O(gqt) time be
ause ea
h multi-dividing is done in linear (O(qt)) time.The hashing fun
tion we used for hashing is obtained as follows. Be
ause we will hashsegments whi
h are log logn=h-th, (log logn=h)2-th,... of the whole integer, we will use hashfun
tions for segments whi
h are log logn=h-th, (log logn=h)2-th.... of the whole integer.The hash fun
tion for segments whi
h are (log logn=h)t-th of the whole integer is obtainedby
utting ea
h of the p integers into (h= log logn)t segemtns. Viewing ea
h segment asan integer we obtain p(h= log logn)t integers. We then obtain one hash fun
tion for thesep(h= log logn)t integers. Be
ause t < logn we obtain no more than logn hash fun
tions.Now let us take a look at the linear time sorting we mentioned earlier. Assume that wehave pa
ked the hashed values for ea
h word into (2 logn)=(
 log logn) bits. We have t setswith ea
h set
ontaining q+p hashed words of (2 logn)=(
 log logn) bits ea
h. These integersare to be sorted within ea
h set. If we sort ea
h set individually we
annot a
hieve lineartime. What we do is to
ombine all hashed words into one pool and sort them as follows.Pro
edure Linear-Time-SortInput: there are r � n2=5 integer di's. di:value is the integer value of di whi
h has(2 logn)=(
 log logn) bits. di:set is the set di is in. Note that there are only t sets.begin1. Sort all di's by di:value using bu
ket sort. Assume that the sorted integers are in A[1::r℄.This step takes linear time be
ause there are at least n2=5 integers to be sorted.2. for j = 1 to r doPut A[j℄ into set A[j℄:set;Thus we have all sets sorted in linear time.As we have said that after g times of redu
tion of bits we have non
onservative advantage(h= log logn)g. We do not
arry this bits redu
tion to the end be
ause after we gained suÆ-14

ient non
onservative advantage we
an swit
h to Lemma 2 for
ompletion of partitioning qintegers by the p intergers for ea
h set. Note that by the nature of bits redu
tion, the originalpartitioning problem (partition q integers by p integers) for ea
h set has been transformedto w partitioning subproblems on w subsets, for some integer w (See se
tion 2 and Fig. 1for explanation).Now for ea
h set we
ombine all its subsets in subproblems into one set. We theninvoke Lemma 2 to do the partition. Be
ause we have (h= log logn)g non
onservative advan-tage the algorithm in Lemma 2 takes O(qt log logn=(g(logh � log log logn) � log log logn))time. Let qtg = qt log logn =(g(logh � log log logn) � log log logn). We arrive at g =(log logn=(log h� log log logn� (log log logn)=g))1=2 < (log logn=(log h� 2 log log logn))1=2.Sin
e we have assumed that we are working on levels greater than 2 log log logn we needto sum g for logh = 2 log log logn to log logn, for whi
h we have Plog log nlog h=2 log log log n g �Plog lognlog h=2 log log log n(log logn=(log h� 2 log log logn))1=2 = O(log logn).We have partitioned q integers by p integers in ea
h set. Thus we have S0 < fe1g <S1 < ::: < fepg < Sp, where ei is a segment of ai obtained by bits redu
tion. (Be
ause bitsredu
tion ea
h of the p integers
ould produ
e several segments and therefore we
ould havemore than p but less than p logn ei's and Si's. But this does not a�e
t the analysis of ouralgorithm.) What we have done the partitioning is by
ombining all subsets of subproblems.Assume integers are stored in array B su
h that integers in Si pre
ede integers in Sj ifi < j. And ei is stored after Si�1 and before Si. Let B[i℄ in subset B[i℄:subset. To let thepartitioning be done for ea
h subset we do the following:for j = 1 to q doPut B[j℄ into subset B[j℄:subset.This takes linear time and O(n) spa
e.Now we are ba
k to the pa
king problem whi
h we solve as follows. We
an assumethat the number of bits logm in a word satisfying logm � logn log logn, for otherwisewe
an use radix sort to sort the integers. A word has h= log logn hashed values (seg-ments) in it at level log h of the exponential sear
h tree. The total number of hashedbits in a word is (2 logn)=(
 log logn) bits. Therefore the hashed bits in a word looks like0it10it20i:::th= log log n, where tk's are hashed bits and 0i are the null spa
es between hashedbits. We �rst pa
k log logn words into one word to get w1 = 0jt11t21 ::: tlog log n;10jt12t22 :::tlog log n;20j ::: t1;h= log log nt2;h= log log n ::: tlog log n;h= log log n, where ti;k's, k = 1; 2; :::; h= log logn,are from the i-th word. We then use O(log logn) steps to pa
k w1 to w2 = 0jh= log log nt11t21::: tlog log n;1t12t22 ::: tlog log n;2 ::: t1;h= log log nt2;h= log log n ::: tlog log n;h= log log n. Now the pa
ked hash15

bits in w2 has only 2 logn=
 bits. We use O(log logn) time to unpa
k w2 to log logn wordsw3;k = 0jh= log log n0rtk10r tk20r:::tk;h= log log n, k = 1; 2; :::; log logn. We then use O(log logn)time to pa
k these log logn words into one word w4 = 0rt110rt120rt130r ::: t1;h= log log n0rt210rt220r::: t2;h= log log n0r ::: tlog log n;10rtlog log n;20r ::: tlog log n;h= log log n. We then use O(log logn) steps topa
k w4 to w5 = 0st11t12t13 ::: t1;h= log log nt21t22 ::: t2;h= log log n ::: tlog log n;1tlog log n;2 ::: tlog log n;h= log log n.We �nally use O(log logn) steps to unpa
k w5 to log logn pa
ked words. Overall we expendedO(log logn) time for pa
king log logn words. Thus for ea
h word the time expended is
on-stant.Thus we have:Theorem 1: n integers
an be sorted in O(n log logn) time and linear spa
e.6 Con
lusionsWe have �nally a
hieved O(n log logn) time and linear spa
e for integer sorting. Althoughit is not known whether this is the lower bound, we believe that breaking this bound deter-ministi
ally should be very diÆ
ult.Referen
es[1℄ S. Albers and T. Hagerup. Improved parallel integer sorting without
on
urrent writ-ing. Information and Computation, 136, 25-51(1997).[2℄ A. Andersson. Fast deterministi
 sorting and sear
hing in linear spa
e. Pro
. 1996IEEE Symp. on Foundations of Computer S
ien
e, 135-141(1996).[3℄ A. Andersson, T. Hagerup, S. Nilsson, R. Raman. Sorting in linear time? Pro
. 1995Symposium on Theory of Computing, 427-436(1995).[4℄ P. van Emde Boas, R. Kaas, E. Zijlstra. Design and implementation of an eÆ
ientpriority queue. Math. Syst. Theory 10 99-127(1977).[5℄ M. Dietzfelbinger, T. Hagerup, J. Katajainen, M. Penttonen. A reliable randomizedalgorithm for the
losest-pair problem. J. Algorithms 25, 19-51(1997).[6℄ M.L. Fredman, D.E. Willard. Surpassing the information theoreti
 bound with fusiontrees. J. Comput. System S
i. 47, 424-436(1994).[7℄ T. Hagerup and H. Shen. Improved non
onservative sequential and parallel integersorting. Infom. Pro
ess. Lett. 36, pp. 57-63(1990).16

[8℄ Y. Han. Improved fast integer sorting in linear spa
e. Information and Computation,Vol. 170, No. 1, 81-94(O
t. 2001).[9℄ Y. Han, Fast integer sorting in linear spa
e. Pro
. Symp. Theoreti
al Aspe
ts of Com-puting (STACS'2000), Le
ture Notes in Computer S
ien
e 1170, 242-253(Feb. 2000).[10℄ Y. Han, M. Thorup. Sorting integers in O(nplog logn) expe
ted time and linearspa
e. Manus
ript.[11℄ Y. Han, X. Shen. Conservative algorithms for parallel and sequential integer sorting.Pro
. 1995 International Computing and Combinatori
s Conferen
e, Le
ture Notesin Computer S
ien
e 959, 324-333(August, 1995).[12℄ D. Kirkpatri
k and S. Reis
h. Upper bounds for sorting integers on random a

essma
hines. Theoreti
al Computer S
ien
e 28, 263-276(1984).[13℄ F. T. Leighton. Introdu
tion to Parallel Algorithms and Ar
hite
tures: Arrays, Trees,Hyper
ubes. Morgan Kaufmann Publ., San Mateo, CA. 1992.[14℄ R. Raman. Priority queues: small, monotone and trans-di
hotomous. Pro
. 1996 Eu-ropean Symp. on Algorithms, Le
ture Notes in Computer S
ien
e 1136, 121-137(1996).[15℄ M. Thorup. Fast deterministi
 sorting and priority queues in linear spa
e. Pro
. 1998ACM-SIAM Symp. on Dis
rete Algorithms (SODA'98), 550-555(1998).[16℄ M. Thorup. Randomized sorting in O(n log logn) time and linear spa
e using addi-tion, shift, and bit-wise boolean operations. Pro
. 8th ACM-SIAM Symp. on Dis
reteAlgorithms (SODA'97), 352-359(1997).

17

