
Deterministi Sorting in O(n log log n) Time and LinearSpae1Yijie HanShool of Interdisiplinary Computing and EngineeringUniversity of Missouri at Kansas City5100 Rokhill RoadKansas City, MO 64110hanyij�umk.eduhttp://welome.to/yijiehanAbstratWe present a fast deterministi algorithm for integer sorting in linear spae. Ouralgorithm sorts n integers in the range f0; 1; 2; :::;m�1g in linear spae in O(n log logn)time. This improves our previous result[8℄ whih sorts inO(n log log n log log logn) timeand linear spae. This also improves previous best deterministi sorting algorithm[3, 11℄whih sorts in O(n log log n) time but uses O(m�) spae. Our results an also beompared with Thorup's previous result[16℄ whih sorts in O(n log log n) time andlinear spae but uses randomization.Keywords: Algorithms, sorting, integer sorting, time omplexity, linear spae.1 IntrodutionSorting is a lassial problem whih has been studied by many researhers. Although theomplexity for omparison sorting is now well understood, the piture for integer sorting isstill not lear. The only known lower bound for integer sorting is the trivial
(n) bound.Continuous researh e�orts have been made by many researhers on integer sorting[2, 3, 6,7, 8, 9, 11, 12, 14, 15, 16℄. Reent advanes in the design of algorithms for integers sortinghave resulted in fast algorithms[3, 11, 16℄. However, these algorithms use randomizationor superlinear spae. For sorting integers in f0; 1; :::; m � 1g O(m�) spae is used in thealgorithms reported in [3, 11℄. When m is large (say m =
(2n)) the spae used is exessive.Integer sorting using linear spae is therefore extensively studied by researhers. An earlierwork by Fredman and Willard[6℄ shows that n integers an be sorted in O(n logn= log logn)time in linear spae. Raman[14℄ showed that sorting an be done in O(nplogn log logn)time in linear spae. Later Andersson[2℄ improved the time bound to O(nplogn). ThenThorup[15℄ improved the time bound to O(n(log logn)2). Our previous results showed timeO(n(log logn)3=2) [9℄ and the previous best result of O(n log logn log log logn) [8℄. In this1Preliminary version of this paper has been presented at 2002 ACM Symposium on Theory of Computing(STOC'02). 1

paper we further improve upon previous results. We show that n integers in f0; 1; 2; :::; m�1gan be sorted in O(n log logn) time in linear spae.Our result improves on time on the previous best linear spae sorting algorithm[8℄ whihuses O(n log logn log log logn) time. Our result also improves on spae on the previousfastest deterministi sorting algorithm[3, 11℄ whih sorts in O(n log logn) time and O(m�)spae, where f0; 1; :::; m� 1g is the range of the integers. This previous result was obtainedindependently by Andersson et al. [3℄ and by Han and Shen[11℄. The spae used in theseprevious algorithms is atually O(m). But we may assume that spae is redued to O(m�) byusing radix sorting. Our result an also be ompared with Thorup's result[16℄ whih sorts inO(n log logn) time and linear spae using randomization. However, although our algorithmdo not use randomization we use multipliation instrution in our algorithm while Thorup'salgorithm uses randomization but without using multipliation instrution.The tehniques used in our algorithm inlude oordinated pass down of integers on theAndersson's exponential searh tree[2℄ and the linear time multi-dividing of the bits of in-tegers. Although we used multi-dividing tehnique in our previous design[8℄, there multi-dividing takes nonlinear time and therefore is too slow. Our new multi-dividing an only beaomplished with oordinated pass down of integers. Instead of inserting integers one at atime into the exponential searh tree we pass down all integers one level of the exponentialsearh tree at a time. Suh oordinated passing down provides us the hane of performingmulti-dividing in linear time and therefore speeding up our algorithm.We would like to omment on the omplexity of O(n log logn). This bound was man-ifested as the best bound even for non-linear spae deterministi sorting. Andersson [2℄showed several algorithms for sorting, none of them ould break the O(n log logn) bound.Even for very large integers Andersson showed time O(n(logn= log b + log logn)) where bis the word length(the number of bits in a word). Thus no matter how large the inte-ger is O(n log logn) time is needed in Andersson's algorithm. In ontrast for very largeintegers its large word length an be exploited in a randomized algorithm[3℄. Sine Ander-sson's exponential searh tree requires O(n log logn) time to balane, it would be unlikelythat any deterministi algorithm uses exponential searh tree approah ould underut theO(n log logn) time omplexity. As the time of O(n log logn) is the onverge point for ur-rently the best bound for linear spae sorting as demonstrated in this paper, for non-linearspae sorting as shown in [3, 11℄, and for a randomized linear spae sorting [16℄, it an beviewed as we have reahed a milestone.Although O(n log logn) is a natural deterministi bound, reently Han and Thorup �ndthat this omplexity an be improved in a randomized setting. In [10℄ Han and Thorupobtained a randomized integer sorting algorithm whih sorts in O(nplog logn) time and2

linear spae.2 PreliminaryOur algorithm is built upon the onept of Andersson's exponential searh tree[2℄. Anexponential searh tree of n leaves onsists of a root r and n� exponential searh subtrees,0 < � < 1, eah having n1�� leaves and rooted at a hild of r. Thus an exponential searhtree has O(log logn) levels. Sorting is done by inserting integers into the exponential searhtree. When imbalane happens in the tree rebalane needs to be done. In [2℄ Anderssonhas shown that rebalane takes O(n log logn) time when n integers are inserted into thetree. The dominating time is taken by the insertion. Andersson has shown that insertionan be done in O(plogn) time. He inserts one integer into the exponential tree at a time.Thorup[15℄ �nds that by inserting integers in bathes the amortized time for insertion an beredued to O(log logn) for eah level of the tree. The size of one bath b at a node is de�nedby Thorup to be equal to the number of hildren d of the node. In our previous design[8, 9℄we pass down d2 integers in a bath. We showed[8, 9℄ that we an speed up omputation bysuh a sheme.An integer sorting algorithm sorts n integers in f0; 1; :::; m� 1g is alled a onservativealgorithm[12℄ if the word length (the number of bits in a word) used in the algorithm isO(log(m+n)). It is alled a nononservative algorithm if the word length used is larger thanO(log(m + n)).One way to speed up sorting is to redue the number of bits in integers. After thenumber of bits is redued we an apply nononservative sorting. If we are sorting integersin f0; 1; :::; m� 1g with word length k log(m+n) with k � 1 then we say that we are sortingwith nononservative advantage k.We use the following notation. For a set S we let min(S) = minfaja 2 Sg and max(S) =maxfaja 2 Sg. For two sets S1; S2 we denote S1 < S2 if max(S1) � min(S2).One way to redue the number of bits in an integer is to use bisetion (binary dividing)on the bits of the integer (it is sometimes alled exponential range redution). This idea was�rst invented by van Emde Boas et al. [4℄. In eah step, the number of remaining bits isredued to half. Thus in log logm steps logm bits of the integers are redued to onstantnumber of bits. This sheme, although very fast, requires a very large amount of memory. Itrequires O(m) memory ells and therefore annot be diretly exeuted in linear spae (O(n)spae). Andersson[2℄ invented the exponential searh tree and he used perfet hashing toredue the spae to linear. He an store only one integer into a word and then applies thehash funtion. To speed up the algorithm for sorting, we need to pak several integers into3

one word and then to use onstant number of steps to aomplish the hashing for all integersstored in the word. In order to ahieve this we relax the demand of perfet hashing. Wedo not demand n integers to be hashed into a table of size O(n) without any ollision. Ahash funtion hashes n integers into a table of size O(n2) in onstant time and withoutollision suÆe for us. Therefore we use the improved version of the hashing funtion givenby Dietzfelbinger et al. [5℄ and Raman[14℄ as shown in the following Lemma.Let b � 0 be an integer and let U = f0; :::; 2b� 1g. The lass Hb;s of hash funtions fromU to f0; :::; 2s � 1g is de�ned as Hb;s = fhaj0 < a < 2b, and a is odd g and for all x 2 U :ha(x) = (ax mod 2b) div 2b�sLemma 1(Lemma 9 in [14℄): Given integer b � s � 0 and T � f0; :::; 2b � 1g withjT j = n, and t � 2�s+1 n2 !, a funtion ha 2 Hb;s an be hosen in O(n2b) time suh thatthe number of ollisions oll(ha; T) � t.Take s = 2 logn we obtain a hash funtion ha whih hashes n integers in U into a tableof size O(n2) without any ollision. Obviously ha(x) an be omputed for any given x inonstant time. If we pak several integers into one word and have these integers properlyseparated with several bits of 0's we an safely apply ha to the whole word and the resultis that hashing values for all integers in the word have been omputed. Note that this ispossible beause only the omputation of a multipliation, mod 2b and div 2b�s is involvedin omputing a hash value.Andersson et al. [3℄ used a randomized version of a hash funtion in H beause theyould not a�ord to onstrut the funtion deterministially.A problem with Raman's hash funtion is that it takes O(n2b) time to �nd the right hashfuntion. Here b is the number of the bits in an integer. What we needed is a hash funtionwhih an be found in O(n) time for a onstant beause this is needed in the exponentialsearh tree [2, 14℄. Obviously Raman's hash funtion does not satisfy this riterion when bis large. However, Andersson's result[2℄ says that n integers an be sorted in linear spaein O(n(logn= log b + log logn)) time. Thus if b > n we simply use Andersson's sortingalgorithm to sort in O(n log logn) time. Thus the only situation we have to onsider isb � n. Fortunately for this range of b O(n2b) = O(n3). Therefore we an assume the righthash funtion an be found in O(n3) time.Note that although the hash table has size O(n2) it does not a�et our linear spae laimbeause we do not use hash value to index into a table. Hashing is only used to serve thepurpose of reduing the number of bits in an integer.We will use signature sorting[3℄ in our algorithm. Signature sorting works as follows.4

Suppose that n integers have to be sorted and eah integer has logm bits. We view thateah integer has h segments with eah segment ontaining logm=h bits. Now we applyhashing to eah and every segment in eah integer and we get 2h logn bits of hashed valuesfor eah integer. After sorting on hashed values for all integers the original sorting problem(of sorting n integers of logm bits eah) an be transformed to the sorting problem of sortingn integers of logm=h bits eah.We will also study the following partitioning problem. Let a1; a2; :::; ap be p integers andS is a set of integers. We intend to partitioning S into p+1 sets as S0 < fa1g < S1 < fa2g <::: < fapg < Sp. Beause we use signature sorting, before we do the above partitioning wewill partition the bits in ai into h segments and take some of these h segments. We will alsopartition bits for eah integer in S into h segment and take one segment and disard othersegments. For eah ai we essentially take all the h segments. However, the orrespondingsegments of ai and aj may be idential. In this ase we just need one of them. The segment wetake for an integer in S is the segment whih \branhes out" of ai's. We therefore transformthe original partitioning problem into several partitioning problems with integers of logm=hbits. In Fig. 1 we show that a1 = 3, a2 = 5, a3 = 7, a4 = 10, S = f1; 4; 6; 8; 9; 13; 14g.We partition eah integer into 2 segments. From a1 = 3 we obtain upper segment 0, lowersegment 3. From a2 = 5 we obtain upper segment 1 and lower segment 1. From a3 = 7we obtain upper segment 1 and lower segment 3. From a4 = 10 we obtain upper segment2 and lower segment 2. For 1 2 S we obtain lower segment 1 beause it branhes out froma1 = 3 in the lower segment. For 4 2 S we obtain lower segment 0. For 8 2 S we obtainlower segment of 0. For 9 2 S we obtain lower segment of 1. For 13 2 S we obtain uppersegment of 3. For 14 2 S we obtain upper segment of 3. Now all upper segments form onenew partitioning problem. The lower segments of 1 and 3 Form a new partitioning problem.The lower segments of 4,5,6,7 form a new partitioning problem. The lower segments of 8, 9,10 form a new partitioning problem. Therefore we now have 4 partitioning problems.3 Sorting on Small IntegersIn this and the next setion we will show how the following Lemma 2 is proved. The ontentsof this and next setion have appeared in [8℄. We inlude a modi�ed version of them herefor the ompleteness of this paper.Lemma 2: n integers an be sorted into pn sets S1; S2; :::; Spn suh that eah set has pnintegers and Si < Sj if i < j, in time O(n log logn= log k) and linear spae with nononser-vative advantage k log logn.In integer sorting we often pak several small integers into one word. We always assume5

0 1 2 3 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4

4 5

5 6 7

0 1 2 3

0 1

0

Fig. 1. Set partitioning. The numbers in irles are partitioning integers.The numbers in squares are integers in set S.that all the integers paked in a word use the same number of bits. Suppose g integerseah having l bits are paked into one word. By using the test bit tehnique [1, 3℄ we ando a pairwise omparison of the orresponding integers in two words and extrat the largerintegers into one word and smaller integers into another word in onstant time. Thereforeby adapting well-known seletion algorithms we obtain the following lemma:Lemma 3: Seleting the s-th largest integer among the n integers paked into n=g wordsan be done in O(n log g=g) time and O(n=g) spae. In partiular the median an be foundin O(n log g=g) time and O(n=g) spae.Proof: Sine we an do pairwise omparison of g integers in one word with g integers inanother word and extrat the larger integers in one word and smaller integers in anotherword in onstant time, we an extrat the medians of the 1st, 2nd, ... g-th integer of 5words into one word in onstant time. Thus the set S of medians are now ontained inn=(5g) words. Reursively �nd the median m in S. Use m to eliminate at lease n=4 integersamong the n integers. Then pak the remaining integers in n=g words into 3n=(4g) words(the paking inurs the fator log g in the time omplexity) and then reurse. Paking anbe done by the paking algorithm in Leighton[13℄ (Setion 3.4.3). 2Now onsider sorting small integers. Let g integers be paked in one word. We say thatthe ng integers in n words are sorted if gi-th to (g(i+1)� 1)-th smallest integers are sorted6

and paked in the i-th word, 0 � i < n. We have the following lemma:Lemma 4: If g integers using a total of (logn)=2 bits are paked into one word, then the nintegers in n=g words an be sorted in O((n=g) logg) time and O(n=g) spae.Proof: Beause only (logn)=2 bits are used in eah word to store g integers we an usebuket sorting to sort all words by treating eah word as one integer and this takes O(n=g)time and spae. Beause only (logn)=2 bits are used in eah word there are only pn patternsfor all the words. We then put g < (logn)=2 words with the same pattern into one group.For eah pattern there are at most g� 1 words left whih annot form a group. Therefore atmost pn � (g� 1) words annot form groups. For eah group we move the i-th integer in allg words into one word. That is, we take g g-integer vetors and produe g g-integer vetorswhere the i's vetor ontains i-th integer from eah input vetor. This transpose operationan be done with Lemma 5.4 in Thorup[16℄ in time O(g log g) and spae O(g). Therefore forall groups it takes O((n=g) logg) time and O(n=g) spae.For the words not in a group (there are at mostpn�(g�1) of them) we simply disassemblethe words and then reassemble the words. This will take no more than O(n=g) time andspae. After all these are done we then use buket sorting again to sort the n words. Thiswill have all the integers sorted. 2Note that when g = O(logn) we are sorting O(n) integers paked in n=g words inO((n=g) log logn) time and O(n=g) spae. Therefore the saving is onsiderable.Lemma 5: Assume that eah word has logm > logn bits, that g integers eah having(logm)=g bits are paked into one word, that eah integer has a label ontaining (logn)=(2g)bits, and that the g labels are paked into one word the same way as integers are pakedinto words (that is, if integer a is paked as the s-th integer in the t-th word then the labelfor a is paked as the s-th label in the t-th word for labels), then n integers in n=g wordsan be sorted by their labels in O((n log logn)=g) time and O(n=g) spae.Proof: The words for labels an be sorted by buket sorting beause eah word uses (logn)=2bits. The sorting will group words for integers into groups as in Lemma 4. We an transposeeah group of words for integers. 2Note also that the sorting algorithm given in Lemma 4 and Lemma 5 are not stable.As will be seen that sorting algorithms built on them an be made stable by using the wellknown method of appending the address bits to eah input integer.If we have larger word length the sorting an be done faster as shown in the followinglemma.Lemma 6: Assume that eah word has logm log logn > logn bits, that g integers eahhaving (logm)=g bits are paked into one word, that eah integer has a label ontaining(logn)=(2g) bits, and that the g labels are paked into one word the same way as integers7

are paked into words, then n integers in n=g words an be sorted by their labels in O(n=g)time and O(n=g) spae.Proof: Note that although word length is logm log logn only logm bits are used for storingpaked integers. As in Lemmas 4 and 5 we sort the words ontaining paked labels by buketsorting. In order to transpose words of integers we put g log logn words of integers into onegroup instead of putting g words of integers into one group. To transpose the integers ina group ontaining g log logn words we �rst further pak g log logn words into g words bypaking log logn words of integers into one word. We then do transpose on the g words.Thus transpose takes only O(g log logn) time for eah group and O(n=g) time for all integers.After �nishing transpose we then unpak the integers in the g words into g log logn words.2 Note also if the word length is logm log logn and only logm bits are used to pak g � lognintegers into one word. Then the seletion in Lemma 3 an be done in O(n=g) time andspae beause the paking in the proof of Lemma 3 an now be done in O(n=g) time.4 Sort n integers into pn setsConsider the problem of sorting n integers in f0; 1; :::; m � 1g into pn sets as given inLemma 2. We assume that eah word has k log logn logm bits and stores an integer oflogm bits. Therefore the nononservative advantage is k log logn. We also assume thatlogm � logn log logn. Otherwise we an use radix sorting to sort in O(n log logn) time andlinear spae. We divide the logm bits used for representing eah integer into logn bloks.Eah blok thus ontains at least log logn bits. The i-th blok ontaining (i logm= logn)-thto ((i + 1) logm= logn � 1)-th bits. Bits are ounted from the least signi�ant bit startingat 0. We now give a 2 logn stage algorithm whih works as follows.In eah stage we work on one blok of bits. We all these bloks small integers beauseeah small integer now ontains only logm= logn bits. Eah integer is represented by andorresponds to a small integer whih we are working on. Consider the 0-th stage whih workson the most signi�ant blok (the (logn� 1)-th blok). Assume that the bits in these smallintegers are paked into n= logn words with logn small integers paked into one word. Forthe moment we ignore the time needed for paking these small integers into n= logn wordsand assume that this is done for free. By Lemma 3 we an �nd the median of these n smallintegers in O(n= logn) time(note that we have at least log logn nononservative advantage)and O(n= logn) spae. Let a be the median found. Then n small integers an be dividedinto at most three sets S1; S2, and S3. S1 ontains small integers whih are less than a. S2ontains small integers whih are equal to a. S3 ontains small integers whih are greater8

than a. We also have jS1j � n=2 and jS3j � n=2. Although jS2j ould be larger than n=2all small integers in S2 are equal. Let S 02 be the set of integers whose most signi�ant blokis in S2. Then we an eliminate logm= logn bits (the most signi�ant blok) from eahinteger in S 02 from further onsideration. Thus after one stage eah integer is either in aset whose size is at most half of the size of the set at the beginning of the stage, or oneblok of bits (logm= logn bits) of the integer an be eliminated from further omputation.Beause there are only logn bloks in eah integer, eah integer takes at most logn stagesto eliminate bloks of bits. An integer an be put in a half sized set for at most logn times.Therefore after 2 logn stages all integers are sorted. Beause in eah stage we are dealingwith only n= logn words, if we ignore the time needed for paking small integers into wordsand for moving small integers to the right set then the remaining time omplexity will beO(n) beause there are only 2 logn stages.The subtle part of the algorithm is how to move small integers into the set where the or-responding integer belongs after previous set dividing operations of our algorithm. Supposethat n integers have already been divided into e sets. We an use log e bits to label eah set.We wish to apply Lemma 6. Sine the total label size in eah word has to be logn=2, and eahlabel uses log e bits, the number g of labels in eah word has to be at most logn=(2 log e).Further, sine g = logn=(2 log e) small integers should �t in a word, and eah word ontainsk log logn logn bloks, eah small integer an ontain O(k logn=g) = O(k log e) bloks. Notethat we reserve log logn nononservative advantage for the purpose of being used in Lemma6. Thus we assume that (logn)=(2 log e) small integers eah ontaining k log e ontinuousbloks of an integer are paked into one word. For eah small integer we use a label of log ebits indiating whih set it belongs. Assume that the labels are also paked into words thesame way as the small integers are paked into words with (logn)=(2 log e) labels pakedinto one word. Thus if small integer a is paked as the s-th small integer in the t-th wordthen the label for a is paked as the s-th label in the t-th word for labels. Note that weannot disassemble the small integers from the words and then move them beause this willinur O(n) time. Beause eah word for labels ontains (logn)=(2 log e) labels therefore only(logn)=2 bits are used for eah suh word. Thus Lemma 6 an be applied here to move thesmall integers into the sets they belong to. Beause only O((n log e)= logn) words are usedthe time omplexity for moving small integers to their sets is O((n log e)= logn).Note that O(k log e) bloks for eah small integer is the most number of bits we an movein applying Lemma 6 beause eah word has k log logn logm bits and we want to reservelog logn nononservative advantage. Note also that the moving proess is not stable as thesorting algorithm in Lemma 6 is not stable.With suh a moving sheme we immediately fae the following problem. If integer a is9

the i-th member of a set S. That is, a blok of a (all it a0) is listed as the i-th (small)integer in S. When we use the above sheme to move the next several bloks of a (all it a00)into S, a00 is merely moved into a position in set S, but not neessarily to the i-th position(the position where a0 loates). If the value of the blok for a0 is idential for all integers inS that does not reate problem beause that blok is idential no matter whih position inS a00 is moved to. If the value of the blok for a0 is not idential for all integers in S thenwe have problem ontinuing the sorting proess. What we do is the following. At eah stagethe integers in one set works on a ommon blok whih is alled the urrent blok of theset. The bloks whih preede the urrent blok ontain more signi�ant bits of the integerand are idential for all integers in the set. When we are moving more bits into the set wemove the following bloks together with the urrent blok into the set. That is, in the abovemoving proess we assume the most signi�ant blok among the k log e ontinuous bloks isthe urrent blok. Thus after we move these k log e bloks into the set we delete the originalurrent blok beause we know that the k log e bloks are moved into the orret set andthat where the original urrent blok loates is not important beause that urrent blok isontained in the k log e bloks.Another problem we would like to mention is that the size of the sets after several stagesof dividing will beome small. The sheme of Lemmas 4, 5 and 6 relies on the fat that thesize of the set is not very small. Sine we are sorting a set of size n to sets of size pn weshould have no problem. If we want to use our sheme to sort the whole input set we anuse a reursion to keep sorting input set into smaller sets. The details of this an be foundin [8℄.Below is our sorting algorithm whih is used to sort integers into sets of size pn. Thisalgorithm uses yet another reursion (do not onfuse this reursion with the reursion men-tioned in the above paragraph).Algorithm Sort(k log logn; level; a0; a1; :::; at)/* k log logn is the nononservative advantage. ai's are the input integers in a set to besorted. level is the reursion level. */1. if level = 1 then examine the size of the set (i.e. t). If the size of the set is less thanor equal to pn then return. Otherwise use the urrent blok to divide the set into at mostthree sets by using Lemma 3 to �nd the median and then using Lemma 6 to sort. For theset all of its elements are equal to the median eliminate the urrent blok and note the nextblok to beome the urrent blok. Create a label whih is the set number (0, 1 or 2 beausethe set is divided into at most three sets) for eah integers. Then reverse the omputation toroute the label for eah integer bak to the position where the integer loated in the input10

to the proedure all. Also route a number (a 2 bit number) for eah integer indiating theurrent blok bak to the loation of the integer. Return.2.for u = 1 to k do:begin2.1. Pak a(v)i 's into a fration of 1=k-th of the number of words, where a(v)i ontains severalontiguous bloks whih onsist of 1=k-th of the bits in ai and has the urrent blokas its most signi�ant blok.2.2. Call Sort(k log logn; level � 1; a(v)0 ; a(v)1 ; :::; a(v)t). /*When the algorithm returns fromthis reursive all the label for eah integer indiating the set the integer belongsis already routed bak to the position where the integer loates in the input of theproedure all. A number having at most the number of bits in ai indiating theurrent blok in ai is also routed bak to ai. */2.3. Route ai's to their sets by using Lemma 6.endNote that when the reursive all at step 2.2. returns the number of eliminated bits indi�erent sets ould be di�erent. For the subsequent reursive alls to ontinue we have topak a(v)i 's, namely we have to extrat a segment whih has the urrent blok as its mostsigni�ant blok. Also note that sine we have nononservative advantage k we an movethe whole ai in step 2.3.We let a blok ontain (4 logm)= logn bits. Then if we all Sort(k log logn; logk((logn)=4),a0; a1; :::; an�1) where ai's are the input integers, (logn)=4 alls to the level 1 proedure will beexeuted. This ould split the input set into 3(log n)=4 sets. And therefore we need log 3(log n)=4bits to represent/index eah set. We all Sort several times as below:Algorithm IterateSortCall Sort(k log logn; logk((logn)=4); a0; a1; :::; an�1);for j = 1 to 5 dobeginMove ai to its set by buket sorting beause there are only about pn sets;For eah set S = fai0; ai1 ; :::; aitg if t > pn then all Sort(k log logn; logk((logn)=4),ai0 ; ai1 ; :::; ait);end 11

Then (3=2) logn alls to the level 1 proedure are exeuted. Bloks an be eliminated atmost logn times. The other (1=2) logn alls are suÆient to partition the input set of sizen into sets of size no larger than pn.At level j we use only n=klogk((log n)=4)�j words to store small integers. Eah all to the Sortproedure involves a sorting on labels and a transposition of paked integers (use Lemma6) and therefore uses linear time in terms of the number of words used. Thus the timeomplexity of algorithm Sort is:T (level) = kT (level � 1) + n=klogk((log n)=4)�level; (1)T (0) = 0.where is a onstant. Thus T (logk((logn)=4))= O(n log logn= log k).We have thus proved Lemma 2.5 Sorting in O(n log log n) Time and Linear SpaeFor sorting n integers in the range f0; 1; 2; :::; m� 1g we assume that the word length usedin our onservative algorithm is O(log(m + n)). The same assumption is made in previousdesigns [2, 6, 8, 9, 14, 15℄. In integer sorting we often pak several small integers into oneword. We always assume that all the integers paked in a word use the same number of bits.We take 1=� = 5 in Andersson's exponential searh tree. Thus the root has n1=5 hildrenand eah exponential searh tree rooted at a hild of the root has n4=5 leaves.In Andersson's exponential searh tree[2℄, integers are inserted (passed down) into thetree one at a time. Thorup[15℄ suggested to pass down d integers at a time, where d is thenumber of hildren of the node in the tree where integers are to be passed down. In ourprevious design[8, 9℄ we passed down d2 integers at a time. Here we will stik with thissheme, namely passing down d2 integers at a time. What is di�erent from our previousdesign is that we will not pass down the d2 integers all the way down the tree. Instead wewill pass down one level of the tree d2 integer at a time until all integers are passed downone level. Thus at the root we pass down n2=5 integers at a time to the next level. Afterwe have passed down all integers to the next level we essentially partitioned integers intot1 = n1=5 sets S1; S2; :::; St1 with eah Si ontaining n4=5 integers and Si < Sj if i < j. Wethen take n 45 � 25 integers from eah Si at a time and oordinate them to be passed down tothe next level of the exponential tree. We repeat this until all integers are passed down tothe next level. At this time we have partitioned integers into t2 = n1=5 � n4=25 = n9=25 setsT1; T2; :::; Tt2 with eah set ontaining n16=25 integers and Ti < Tj if i < j. Now we are ready12

to pass integers down to the next level in the exponential searh tree.It should not be diÆult to see that the tree balane operation takes O(n log logn) timewith O(n) time for eah level. This is the same as in the original exponential searh treeproposed by Andersson[2℄. For example, at the root we �rst take n1=5 integers and sort themby omparison sorting. This builds one level of the exponential searh tree. We then startto pass integers down the level. If the number of integers at a hild exeeds 2n4=5 we splitthe node into two nodes. Thus at the end of this passing down we end up with at most2n1=5 hildren for the root. We then regroup them to form exatly n1=5 sets S1; S2; :::; St1 asmentioned above.We shall number the levels of the exponential searh tree top down so that root is at level0. Now onsider the passing down at level s. Here we have t = n1�(4=5)s sets U1; U2; :::; Utwith eah set ontaining n(4=5)s integers and Ui < Uj if i < j. Beause eah node at thislevel has p = n(1=5)(4=5)s hildren at level s+ 1 we will pass down q = n(2=5)(4=5)s integers foreah set, or a total of qt � n2=5 integers for all sets, at a time.The pass down an be viewed as sorting q integers in eah set together with the p integersa1; a2; :::; ap in the exponential searh tree so that these q integers are partitioned into p+ 1sets S0; S1; :::; Sp suh that S0 < fa1g < S1 < fa2g < ::: < fapg < Sp.Sine we do not have to totally sort the q integers and q = p2. A temptation is to useLemma 2 to sort. For that we need nononservative advantage whih we will derive below.We will use linear timed multi-dividing tehnique to aomplish this.In Setion 7 of [8℄ it is shown that sorting the integers down the exponential searh treetakes no more than O(nplog logn) time per level. Therefore we assume we have alreadysorted to level l = 2 log log logn and we are onsidering the sorting down the levels greaterthan 2 log log logn.We use signature sorting[3℄ to aomplish multi-dividing. We adapt signature sorting towork for us as follows. Suppose we have a set T of p integers already sorted as a1; a2; :::; apand we wish to use the integers in T to partition a set S of q integers b1; b2; :::; bq to p+1 setsS0; S1; :::Sp suh that S0 < fa1g < S1 < ::: < fapg < Sp. We will all this as partitioningq integers by p integers. Let h = logn=(log p) for a onstant > 1. h= log logn log p-bitintegers an be stored in one word suh that eah word ontains only (logn)=(log logn) bits.We �rst view the bits in eah ai and eah bi as of h= log logn segments of equal length. Weview eah segment as an integer. To gain nononservative advantage for sorting we hash theintegers in these words (ai's and bi's) to get h= log logn hashed values in one word. In order tohave intermediate values in the omputing of hash values do not interfere between adjaentsegments we an separate even and odd segments into two words by applying a suitablemask. We then ompute hash values for the two words and then ombine the hashed values13

of these two words into one. Let a0i be the hashed word orresponding to ai and b0i be thehashed word orresponding to bi. Note that the hashed values total has (2 logn)=(log logn)bits. However, these hashed values are separated into h= log logn segments in eah words.There are \null spaes" between two adjaent segments. We an set these \null spaes" to 0'sby applying a mask. We �rst pak all segments into (2 logn)=(log logn) bits(details below,the log logn in the denominator is needed for this purpose). Now we view eah hashed wordas an integer and sort all these hashed words (this sorting whih takes linear time will bedesribed in detail below). After this sorting the bits in ai and bi are ut to (log logn=h)-th.Thus we have additional multipliative advantage of h= log logn.After repeating the above proess g times we gain nononservative advantage of (h= log logn)gwhile we expend only O(gqt) time beause eah multi-dividing is done in linear (O(qt)) time.The hashing funtion we used for hashing is obtained as follows. Beause we will hashsegments whih are log logn=h-th, (log logn=h)2-th,... of the whole integer, we will use hashfuntions for segments whih are log logn=h-th, (log logn=h)2-th.... of the whole integer.The hash funtion for segments whih are (log logn=h)t-th of the whole integer is obtainedby utting eah of the p integers into (h= log logn)t segemtns. Viewing eah segment asan integer we obtain p(h= log logn)t integers. We then obtain one hash funtion for thesep(h= log logn)t integers. Beause t < logn we obtain no more than logn hash funtions.Now let us take a look at the linear time sorting we mentioned earlier. Assume that wehave paked the hashed values for eah word into (2 logn)=(log logn) bits. We have t setswith eah set ontaining q+p hashed words of (2 logn)=(log logn) bits eah. These integersare to be sorted within eah set. If we sort eah set individually we annot ahieve lineartime. What we do is to ombine all hashed words into one pool and sort them as follows.Proedure Linear-Time-SortInput: there are r � n2=5 integer di's. di:value is the integer value of di whih has(2 logn)=(log logn) bits. di:set is the set di is in. Note that there are only t sets.begin1. Sort all di's by di:value using buket sort. Assume that the sorted integers are in A[1::r℄.This step takes linear time beause there are at least n2=5 integers to be sorted.2. for j = 1 to r doPut A[j℄ into set A[j℄:set;Thus we have all sets sorted in linear time.As we have said that after g times of redution of bits we have nononservative advantage(h= log logn)g. We do not arry this bits redution to the end beause after we gained suÆ-14

ient nononservative advantage we an swith to Lemma 2 for ompletion of partitioning qintegers by the p intergers for eah set. Note that by the nature of bits redution, the originalpartitioning problem (partition q integers by p integers) for eah set has been transformedto w partitioning subproblems on w subsets, for some integer w (See setion 2 and Fig. 1for explanation).Now for eah set we ombine all its subsets in subproblems into one set. We theninvoke Lemma 2 to do the partition. Beause we have (h= log logn)g nononservative advan-tage the algorithm in Lemma 2 takes O(qt log logn=(g(logh � log log logn) � log log logn))time. Let qtg = qt log logn =(g(logh � log log logn) � log log logn). We arrive at g =(log logn=(log h� log log logn� (log log logn)=g))1=2 < (log logn=(log h� 2 log log logn))1=2.Sine we have assumed that we are working on levels greater than 2 log log logn we needto sum g for logh = 2 log log logn to log logn, for whih we have Plog log nlog h=2 log log log n g �Plog lognlog h=2 log log log n(log logn=(log h� 2 log log logn))1=2 = O(log logn).We have partitioned q integers by p integers in eah set. Thus we have S0 < fe1g <S1 < ::: < fepg < Sp, where ei is a segment of ai obtained by bits redution. (Beause bitsredution eah of the p integers ould produe several segments and therefore we ould havemore than p but less than p logn ei's and Si's. But this does not a�et the analysis of ouralgorithm.) What we have done the partitioning is by ombining all subsets of subproblems.Assume integers are stored in array B suh that integers in Si preede integers in Sj ifi < j. And ei is stored after Si�1 and before Si. Let B[i℄ in subset B[i℄:subset. To let thepartitioning be done for eah subset we do the following:for j = 1 to q doPut B[j℄ into subset B[j℄:subset.This takes linear time and O(n) spae.Now we are bak to the paking problem whih we solve as follows. We an assumethat the number of bits logm in a word satisfying logm � logn log logn, for otherwisewe an use radix sort to sort the integers. A word has h= log logn hashed values (seg-ments) in it at level log h of the exponential searh tree. The total number of hashedbits in a word is (2 logn)=(log logn) bits. Therefore the hashed bits in a word looks like0it10it20i:::th= log log n, where tk's are hashed bits and 0i are the null spaes between hashedbits. We �rst pak log logn words into one word to get w1 = 0jt11t21 ::: tlog log n;10jt12t22 :::tlog log n;20j ::: t1;h= log log nt2;h= log log n ::: tlog log n;h= log log n, where ti;k's, k = 1; 2; :::; h= log logn,are from the i-th word. We then use O(log logn) steps to pak w1 to w2 = 0jh= log log nt11t21::: tlog log n;1t12t22 ::: tlog log n;2 ::: t1;h= log log nt2;h= log log n ::: tlog log n;h= log log n. Now the paked hash15

bits in w2 has only 2 logn= bits. We use O(log logn) time to unpak w2 to log logn wordsw3;k = 0jh= log log n0rtk10r tk20r:::tk;h= log log n, k = 1; 2; :::; log logn. We then use O(log logn)time to pak these log logn words into one word w4 = 0rt110rt120rt130r ::: t1;h= log log n0rt210rt220r::: t2;h= log log n0r ::: tlog log n;10rtlog log n;20r ::: tlog log n;h= log log n. We then use O(log logn) steps topak w4 to w5 = 0st11t12t13 ::: t1;h= log log nt21t22 ::: t2;h= log log n ::: tlog log n;1tlog log n;2 ::: tlog log n;h= log log n.We �nally use O(log logn) steps to unpak w5 to log logn paked words. Overall we expendedO(log logn) time for paking log logn words. Thus for eah word the time expended is on-stant.Thus we have:Theorem 1: n integers an be sorted in O(n log logn) time and linear spae.6 ConlusionsWe have �nally ahieved O(n log logn) time and linear spae for integer sorting. Althoughit is not known whether this is the lower bound, we believe that breaking this bound deter-ministially should be very diÆult.Referenes[1℄ S. Albers and T. Hagerup. Improved parallel integer sorting without onurrent writ-ing. Information and Computation, 136, 25-51(1997).[2℄ A. Andersson. Fast deterministi sorting and searhing in linear spae. Pro. 1996IEEE Symp. on Foundations of Computer Siene, 135-141(1996).[3℄ A. Andersson, T. Hagerup, S. Nilsson, R. Raman. Sorting in linear time? Pro. 1995Symposium on Theory of Computing, 427-436(1995).[4℄ P. van Emde Boas, R. Kaas, E. Zijlstra. Design and implementation of an eÆientpriority queue. Math. Syst. Theory 10 99-127(1977).[5℄ M. Dietzfelbinger, T. Hagerup, J. Katajainen, M. Penttonen. A reliable randomizedalgorithm for the losest-pair problem. J. Algorithms 25, 19-51(1997).[6℄ M.L. Fredman, D.E. Willard. Surpassing the information theoreti bound with fusiontrees. J. Comput. System Si. 47, 424-436(1994).[7℄ T. Hagerup and H. Shen. Improved nononservative sequential and parallel integersorting. Infom. Proess. Lett. 36, pp. 57-63(1990).16

[8℄ Y. Han. Improved fast integer sorting in linear spae. Information and Computation,Vol. 170, No. 1, 81-94(Ot. 2001).[9℄ Y. Han, Fast integer sorting in linear spae. Pro. Symp. Theoretial Aspets of Com-puting (STACS'2000), Leture Notes in Computer Siene 1170, 242-253(Feb. 2000).[10℄ Y. Han, M. Thorup. Sorting integers in O(nplog logn) expeted time and linearspae. Manusript.[11℄ Y. Han, X. Shen. Conservative algorithms for parallel and sequential integer sorting.Pro. 1995 International Computing and Combinatoris Conferene, Leture Notesin Computer Siene 959, 324-333(August, 1995).[12℄ D. Kirkpatrik and S. Reish. Upper bounds for sorting integers on random aessmahines. Theoretial Computer Siene 28, 263-276(1984).[13℄ F. T. Leighton. Introdution to Parallel Algorithms and Arhitetures: Arrays, Trees,Hyperubes. Morgan Kaufmann Publ., San Mateo, CA. 1992.[14℄ R. Raman. Priority queues: small, monotone and trans-dihotomous. Pro. 1996 Eu-ropean Symp. on Algorithms, Leture Notes in Computer Siene 1136, 121-137(1996).[15℄ M. Thorup. Fast deterministi sorting and priority queues in linear spae. Pro. 1998ACM-SIAM Symp. on Disrete Algorithms (SODA'98), 550-555(1998).[16℄ M. Thorup. Randomized sorting in O(n log logn) time and linear spae using addi-tion, shift, and bit-wise boolean operations. Pro. 8th ACM-SIAM Symp. on DisreteAlgorithms (SODA'97), 352-359(1997).

17

