Time Lower Bounds for Sorting on Multi-Dimensional
Mesh-Connected Processor Arrays*

Yijie Han
Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA

Yoshihide Igarashi
Department of Computer Science, Gunma University, Kiryu, Japan 376

Keywords: Sorting, parallel computation, time lower bound, mesh-connected processor ar-
ray

1 Introduction

The problem of sorting on a mesh-connected processor array has been studied much [1-7, 9-
11]. It is known that (2d — 1)n steps are optimal computing time within the leading term for
sorting n? items into d-dimensional snake-like order on the d-dimensional mesh-connected
model [4,5,10]. However, upto now we do not know whether the snake-like order is the best
for sorting. A question whether the distance bound 2n — 2 is ultimately achievable on the
n X n mesh-connected model by using some super indexing scheme has been raised [7].

The authors of the present paper have shown that 2.2247n steps are a time lower bound
independent of indexing schemes for sorting n? items on the n x n mesh-connected model
[1]. This lower bound has recently been improved to 2.27n steps [3]. The existence of a poor
indexing scheme with 4n — 2v/2n — 3 time lower bound have also been shown [1]. These
results have been obtained using a new technique called the chain argument [1].

In this paper we develop the chain argument in order that we can apply its extended
version to derive nontrivial lower bounds for sorting. We show a theorem that gives a
relation between computing time for sorting n? items and the number of processors in a
certain region of the mesh-connected model. We can numerically calculate the best lower
bound obtainable from the theorem. For each d > 2, our result is significantly better than
the distance bound of dn.

2 Preliminary

We consider a general model of a synchronous d-dimensional mesh-connected processor array
consisting of n? identical processors. It is denoted by M[(1..n)%]. Each processor at location
(i1,...,1q) is denoted by M[iq,...,¢4]. The distance between M][iy, ..., 14 and M[j1, ..., j4] is
defined to be Zi:l |ix — ji| and denoted by dis((i1, ..., %4), (j1, -+, ja)). Processor M[iy, ..., 4]
is directly connected with processor M{j1, ..., j4] if and only if dis((¢1, ..., %4), (j1, .-y Ja)) = 1.

*Work reported herein was partially supported by the University of Kentucky research initiation grant.

All n? processors work in parallel with a single clock, but they may run different programs.
As for sorting computation, the initial contents of M[(1..n)?] are assumed of n? linearly
ordered items, where each processor has exactly one item. The final contents of M[(1..n)]
are the sorted sequence of the items in a specific order. In one step each processor can
communicate with all of its directly-connected neighbor processors. The interchange of
items in a pair of directly-connected processors or the replacement of the item in a processor
by the item in one of its neighbor processors can be done in one step. Qur model is the same
as one given by Schnorr and Shamir [10]. The computing time is defined as the number of
parallel steps of the basic operations to reach the final configuration.

An index function on M[(1..n)] is a one-to-one mapping from {1,,n}¢ to {1,..., n%}.
For an index function I, the index of M[iy,...,44] is denoted by I(iy,...,i4). A subset of
M][(1..n)%] is called a region. If S is a region, dis((iy,...,i4),9) denotes min{dis((iy, ..., iq),
(J1s s Ja))|MJ1, vy Ja] is in S}, A sequence ((411, ..oy 21d)s - (Zc1, -ey teq)) is called a chain
under index function [if and only if (I(¢11,...,%14), --» L (%c1, .-, Tcd)) iS @ consecutive integer
sequence. For the above chain its length is ¢ — 1. Processor M[iy, ..., 4] is called a corner if
and only if for each ¢ (1 <t < d) 4, is 1 or n. For an integer ¢ we denote n — i+ 1 by 5. If
Mliy, ..., 1q] is a corner and k is a positive integer, { M [j1, ..., Ja]|dis((i1, ooy iq)s (J1y ooy Jd)) <
k} is called a corner region and denoted by CREG((i1,...,14), k). If S is a region, the
cardinality of S is defined as the number of processors in 5 and denoted by |5|. An ordered
pair of corner regions C' REG((t1,...,14),k1) and CREG((i1,...,%4), k2) is called a sweep.
The first corner region and the second corner region of the sweep are called the residing
region and the stretching region, respectively. The length of the sweep is to be defined
d(n — 1) + kl — kQ.

3 The chain theorem

The next theorem gives a relation between the computing time, the length of a sweep and
the length of a chain.

Theorem 3.1 (Chain Theorem). For an index function I on the d-dimensional mesh-
connected model and a sweep of length T, if there is no chain in its residing region such
that its length is equal to the cardinality of the stretching region, then there is no algorithm
of time complexity less than T for sorting n? items on M[(1..n)% into the order specified
by I.

Proof: Let (CREG((i1,...,14), k1), CREG((t1, ..., 14), k2)) be a sweep. Then its length is
T =d(n—1)+ ki — ka. Let S be the cardinality of the stretching region. Suppose that
an algorithm of time complexity T — 1 is executed on M[(1..n)?]. The effect of the initial
contents of the stretching region of M[iy, ..., 74] does not appear before ((n —1)d — ky 4 1)st
step. Let a be the item in M[iy, ..., 4] immediately after the ((n — 1)d — k3)th step. The
destination of @ depends on the initial contents of the stretching region. By assigning
different initial values to the processors in the stretching region, we can force item « into
S + 1 different positions. These different positions form a chain of length 5, and should be
within the residing region since the computing time is T'— 1. O

4 A poor indexing scheme

Kunde [4,5] has shown that within the leading term, (2d — 1)n steps are the asymptotically
optimal computing time for sorting n? items into snake-like order. We show the existence
of a poorer indexing scheme than the snake-like indexing scheme.

Lemma 4.1. Let M[iy,...,i4] be a corner, If 1 < k < n, then

k4/d! < |CREG((i1y ..y i), k)| < (k+d —1)%/d!.

Proof. Follows immediately from |C REG((i1, ..., 14), k)| = (kE+d-1) -

d

Theorem 4.2 There exists an indexing scheme such that any algorithm for sorting n® items
by the indexing scheme on M[(1,...,n)% takes at least 2dn — 2[(d")/*n'/?] — 2d + 1 steps.
Proof. Let k = [(d))'/%n'/?]. We assume that [(d))'/?n'/?] < n. Consider the sweep
(CREG((1,..,1),d(n—1)—k+1), CREG((n,...,n),k)). The length of the sweep is 2dn —
2[(d)/4n1/?] — 2d + 1. From Lemma 4.1 the cardinality of the stretching region is not
smaller than [2%2]. We define an indexing scheme as follows: The first [n%?] sorted
positions are in the residing region, the ([n%/?] 4 1)st sorted position is in the stretching
region, the next [n%/?] sorted positions are in the residing region, the (2[2%?]42)nd sorted
position is in the stretching region, and so on. Then the length of the longest chain in the
residing region is [nd/z] — 1. This length is smaller than the cardinality of the stretching
region. Therefore, from the Chain Theorem this theorem holds. O

5 Cardinality of various regions

The union of k-corner regions is defined by

UJ CREG((i1,..,54), k)

(41, 12q)€{1,n}4

and denoted by UCREG(k,d).
Lemma 5.1. Lettn < k < (t+ 1)n, 0 <t < d— 1. Then for each (cy,...,cq) in {1,n}%,
the following inequalities hold:

B (k—n) (k- 2n)?

' (d—1) T 2d=2)
< |CREG((€1, ey ca), k)

(k+d-1% (k—=n+d-1% (k-=2n+d-1)* 1t(k—tn—|—d—1)d
& d-1 a—ar Y T
Proof. Let us first evaluate the volume of a region on the d-dimensional real space. Let
R(k) be {(i1,...,1q)| for each j (1 < j < d) i, is a positive real number, and Z;l:l i; < k},
and let V (k) be {(¢1,...,74)| for each j (1 < j < d) ¢; is a positive real number not greater
than n, and Z;l:l i; < k}. If S is a region on the d-dimensional real space, the volume of

S is denoted by ||.S]|. Then

(kb —1tn)?
th(d —t)!

(1)

<

g ka1 k=3 e
RGN = [ey [[T = b
0 0 0 .

Since CREG((cq,...,¢cq), k) includes V (k) and is included in V(K + d — 1), ||[V(F)] <
|CREG((¢c1, ..., cq), k)| < |[V(k+ d —1)||. Let {aq,...,aqs} be the set of properties on ele-
ments in R(k), where a; is the property that the value of the ith coordinate is greater than
n. Let R(a;, k) be the subregion of R(k) having property a;, and let N(a;) be the volume
of R(a;, k). We also define R(a},k) as the subregion of R(k) not having property a; and
N(a}) as the volume of R(al, k). Since an element in R(k) can have more than one property,

we also use the following notations: N(a, ..., a;,) is the volume of the subregion of R(k)
having properties a;,,...,a;, and N(a} ,...,a}) is the volume of the subregion of R(k) not
having properties a;,, ..., a;,. Then ||V(k)|| = N(da},...,a}). From the principle of inclusion

and exclusion [8]7 ||V(k)|| = ||R(k)|| - ZN(ah) + ZN(ai17ai2) - ZN(ai17ai27ai3) + .
+ (=1)?N(ay, as, ..., ag), where the sum of 32 N(a;,, ..., a;,) is taken over all combinations
of t properties. If k& < tn, then all the terms after the ¢th term in the right-hand side of
the above formula are 0. By a simple integration we have N(a;,,...,a;) = (k —tn)?/d! if
k > tn. Hence

d _) —92n)d — tn)?
||V(k)||:%_(f)%+(g)%_—I_(_l)t((ti)(k d't)

kY (k=n)? (k- 2n)? (ke —tn)?
= o T Y S E T
ifk>tn. O
Lemma 5.2. Ift|in] <k <(t+1)[n] and 0 <t < d—1, then
2k) (2k —n)? (2k —2n)? (2k — tn)?
(d!) B ((d—l))! (2!(d—2))! R (t!(d—t))! < [UCREG(K,)
o 2kt d- mt 2k+d-1)—n)? (2(k+d—1)—2n)
= a R)]
oy 2EEd =) — tn)d

th(d —1)!
Lemma 5.3. If (d—t—1)[n| <k <(d—t)[3n] and 0 <t < d—1, then
g (dn=2B)" ((d=1Dn—=2k)" ((d=2)n—2k)"

d! (d—1)! 21(d — 2)!
fog(eynl ;(gi;)?k)d
< |UCREG(E,d) < nt - 91— Q(kd!+ d-1)" (d- 1)n(; %(11?)-;- d— 1))
((d=2)n —2(k+d-1))* - (_Um((d— i — 20k + d — 1))

21(d — 2)! 1(d — 1)!

The proofs of Lemmas 5.2 and 5.3 are similar to that of Lemma 5.1 and are given in [2].
The values of the formulae bounding |[UCREG(k,d)| in Lemma 5.2 are exactly the same as
the values of the formulae in Lemma 5.3. If k < %dn, then the evaluation of |UC REG(k,d)|
by Lemma 5.2 is easier than by Lemma 5.3, and otherwise the evaluation by Lemma 5.3 is
easier than by Lemma 5.4.

6 A lower bound for an arbitrary sorting order

Theorem 6.1. Let V = |[UCREG(ky,d)| and |[CREG((1,...,1),ks)| > n? — [LV7], where
1< ki, ke <(n—1)d+ 1. Then a lower bound for sorting n? items by any indexing scheme
on the d-dimensional mesh-connected model is 2d(n — 1) — k1 — ka + 1 steps.

Proof. We consider an arbitrary indexing function I on M[(1..n)¢]. There exists a position
(i-e., a processor) in UCREG(ky,d) such that [$V] < I(b) < n?— [JV]|+1or [$V] <
I(b) < n?—T1V]+1. Such aposition bis in at least one corner region C REG((i1, ..., i), k1).
Consider the sweep, (CREG((t1, ..., tq), (n—1)d—k1+1), CREG((i1, ..., 1q), k2)). Since b is
outside the residing region, the length of the longest chain in the residing region is at most
n? — [LV] — 1. Since the cardinality of the stretching region is not less than n? — [$V],
from the Chain Theorem a lower bound for sorting n? items by indexing function I on the
model is 2d(n — 1) — k1 — ko + 1 steps. O

Good time lower bounds for arbitrary sorting order can be obtained from Theorem 6.1
by minimizing the value of ky + ko. Although it is difficult to give a general formula of
the maximized lower bound as a function of n and d, we can numerically derive it for an
arbitrary d by using Lemmas 5.1-5.3. Since we are mainly interested in asymptotic lower
bounds, we hereafter omit minor terms, ceilings and floors in formulae.

From Lemma 5.2, V = |[UCREG(n,d)| > ((2n)? — dn?)/d!. 1If the cardinality of
CREG((i1,...,i4),) is not less than n? — 1V, from Theorem 5.2 a lower bound for sorting
n? items on the d-dimensional model is (2d — 1)n — r steps. In this case there exists such r
in the range between (d — 1)n and (d — 2)n. Let r = (d — 1 — t)n, where 0 < ¢t < 1. Then
|CREG((41, ...rig),7)| > n? — 2V if and only if (1 4+) — dt? < 2(2¢ —d). Let t +1 =
(L2 —d))4. Then |C REG(iy, ..., 14),7)| > n? = 3V. Therefore, ((1(2¢—d))"/+d—1)nis
a time lower bound for sorting n? items on the model. Hence we have the next proposition.
Proposition 6.2. A time lower bound for sorting n® items into an arbitrary order on the
d-dimensional mesh-connected model is ((1(2¢ — d))"/* + d — 1)n steps.

Better lower bounds can be obtained directly from Theorem 6.3. For d = 2 we choose

ki = (1-3v6)n and ky = (2= 2/6)n. Then [CREG (41, ..., 1), k2)| > n?—F|[UCREG (ky,d)|.
Therefore, from Theorem 6.3, 4n — ky — ko &~ 2.2247n is a time lower bound [1].

Theorem 6.3. An asymptotic time lower bound for sorting n® items into any sorting order
on the 2-dimensional mesh-connected model is (14 3/6)n ~ 2.2247n steps.

For d = 3, let ky = 0.87n and ko = 1.7294n; for d = 4, let k1 = 1.12n and ky = 2.2667n;
for d = 5, let ky = 1.395n and ke = 2.7893n. From Theorem 6.3 we have the following
theorems.

Theorem 6.4. An asymptotic time lower bound for sorting n® items into any sorting order
on the 3-dimensional mesh-connected model is 3.4086n steps.
Theorem 6.5. An asymptotic time lower bound for sorting n* items into any sorting order

on the 4-dimensional mesh-connected model is 4.6133n steps.

Theorem 6.6 An asymptotic time lower bound for sorting n° items into any sorting order
on the 5-dimensional mesh-connected model is 5.8207n steps.

Time lower bounds listed in Theorems 6.4-6.6 are the best ones obtainable from Theorem
6.1. These are better than lower bounds obtained from Proposition 6.2.

References

[1]

[6]

[7]

[8]

[9]

[10]

[11]

Y. Han and Y. Igarashi, Time lower bounds for sorting on a mesh-connected pro-
cessor array, in: Proc. 3rd Aegean Workshop on Computing, Corfu, Greece, Lecture
Notes in Computer Science 319 (Springer, Berlin, 1988) 434-443.

Y. Han and Y. Igarashi, Time lower bounds for parallel sorting on multi-dimensional
mesh-connected processor arrays, Techn. Report TR No. 107-88. Dept. Comput. Sci.,
Univ. of Kentucky-Lexington, 1988.

Y. Han, Y. Igarashi and M. Truszczynski, Indexing functions and time lower bounds
for sorting on a mesh-connected computer, Techn. Report TR 114-88, Dept. of Com-
put. Sci., Univ. of Kentucky, 1988.

M. Kunde, Lower bounds for sorting on mesh-connected architectures, Acta Inform.,
24 (1987). 121-130.

M. Kunde, Optimal sorting on multi-dimensionally mesh-connected computers, in:
Proc. Jth Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Com-
puter Science 247 (Springer, Berlin, 1987) 408-419.

H.-W. Lang, M. Schimmler, H. Schmech and H. Schréder, Systolic sorting on a
mesh-connected network, IEEE Trans. Comput., 34 (1985) 652-658.

Y. Ma, S. Sen and I.D. Scherson, The distance bound for sorting on mesh-connected
processor arrays is tight, in: Proc. 27th IEFFE Symp. on Foundations of Compul.
Sei. (1986) 255-263.

F.S. Roberts, Applied Combinatorics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

K. Sado and Y. Igarashi, A divide-and-conquer method of the parallel sort, IECE of
Japan, Techn. Commit. of Automata and Languages, AL84-68, 1985, 41-50.

C.P. Schnorr and A. Shamir, An optimal sorting algorithm for mesh-connected com-
puters, in: Proc. 18-th ACM Symp. on Theory of Computing, (1986) 255-263.

C.D. Thompson and H.T. Kung, Sorting on a mesh-connected parallel computer,
Comm. ACM 20 (1977) 263-271.

