
Time Lower Bounds for Sorting on Multi-DimensionalMesh-Connected Processor Arrays �Yijie HanDepartment of Computer Science, University of Kentucky, Lexington, KY 40506, USAYoshihide IgarashiDepartment of Computer Science, Gunma University, Kiryu, Japan 376Keywords: Sorting, parallel computation, time lower bound, mesh-connected processor ar-ray1 IntroductionThe problem of sorting on a mesh-connected processor array has been studied much [1-7, 9-11]. It is known that (2d�1)n steps are optimal computing time within the leading term forsorting nd items into d-dimensional snake-like order on the d-dimensional mesh-connectedmodel [4,5,10]. However, upto now we do not know whether the snake-like order is the bestfor sorting. A question whether the distance bound 2n � 2 is ultimately achievable on then� n mesh-connected model by using some super indexing scheme has been raised [7].The authors of the present paper have shown that 2:2247n steps are a time lower boundindependent of indexing schemes for sorting n2 items on the n � n mesh-connected model[1]. This lower bound has recently been improved to 2.27n steps [3]. The existence of a poorindexing scheme with 4n � 2p2n � 3 time lower bound have also been shown [1]. Theseresults have been obtained using a new technique called the chain argument [1].In this paper we develop the chain argument in order that we can apply its extendedversion to derive nontrivial lower bounds for sorting. We show a theorem that gives arelation between computing time for sorting nd items and the number of processors in acertain region of the mesh-connected model. We can numerically calculate the best lowerbound obtainable from the theorem. For each d � 2, our result is signi�cantly better thanthe distance bound of dn.2 PreliminaryWe consider a general model of a synchronous d-dimensional mesh-connected processor arrayconsisting of nd identical processors. It is denoted byM [(1::n)d]. Each processor at location(i1; :::; id) is denoted by M [i1; :::; id]. The distance between M [i1; :::; id] and M [j1; :::; jd] isde�ned to bePdk=1 jik�jkj and denoted by dis((i1; :::; id); (j1; :::; jd)). ProcessorM [i1; :::; id]is directly connected with processorM [j1; :::; jd] if and only if dis((i1; :::; id); (j1; :::; jd)) = 1.�Work reported herein was partially supported by the University of Kentucky research initiation grant.1



All nd processors work in parallel with a single clock, but they may run di�erent programs.As for sorting computation, the initial contents of M [(1::n)d] are assumed of nd linearlyordered items, where each processor has exactly one item. The �nal contents of M [(1::n)d]are the sorted sequence of the items in a speci�c order. In one step each processor cancommunicate with all of its directly-connected neighbor processors. The interchange ofitems in a pair of directly-connected processors or the replacement of the item in a processorby the item in one of its neighbor processors can be done in one step. Our model is the sameas one given by Schnorr and Shamir [10]. The computing time is de�ned as the number ofparallel steps of the basic operations to reach the �nal con�guration.An index function on M [(1::n)d] is a one-to-one mapping from f1; :::; ngd to f1; :::; ndg.For an index function I , the index of M [i1; :::; id] is denoted by I(i1; :::; id). A subset ofM [(1::n)d] is called a region. If S is a region, dis((i1; :::; id); S) denotes minfdis((i1; :::; id);(j1; :::; jd))jM [j1; :::; jd] is in Sg. A sequence ((i11; :::; i1d); :::; (ic1; :::; icd)) is called a chainunder index function I if and only if (I(i11; :::; i1d); ::; I(ic1; :::; icd)) is a consecutive integersequence. For the above chain its length is c� 1. Processor M [i1; :::; id] is called a corner ifand only if for each t (1 � t � d) it is 1 or n. For an integer i we denote n � i+ 1 by i. IfM [i1; :::; id] is a corner and k is a positive integer, fM [j1; :::; jd]jdis((i1; :::; id); (j1; :::; jd)) <kg is called a corner region and denoted by CREG((i1; :::; id); k). If S is a region, thecardinality of S is de�ned as the number of processors in S and denoted by jSj. An orderedpair of corner regions CREG((i1; :::; id); k1) and CREG((i1; :::; id); k2) is called a sweep.The �rst corner region and the second corner region of the sweep are called the residingregion and the stretching region, respectively. The length of the sweep is to be de�nedd(n� 1) + k1 � k2.3 The chain theoremThe next theorem gives a relation between the computing time, the length of a sweep andthe length of a chain.Theorem 3.1 (Chain Theorem). For an index function I on the d-dimensional mesh-connected model and a sweep of length T , if there is no chain in its residing region suchthat its length is equal to the cardinality of the stretching region, then there is no algorithmof time complexity less than T for sorting nd items on M [(1::n)d] into the order speci�edby I.Proof: Let (CREG((i1; :::; id); k1); CREG((i1; :::; id); k2)) be a sweep. Then its length isT = d(n � 1) + k1 � k2. Let S be the cardinality of the stretching region. Suppose thatan algorithm of time complexity T � 1 is executed on M [(1::n)d]. The e�ect of the initialcontents of the stretching region of M [i1; :::; id] does not appear before ((n� 1)d�k2+1)ststep. Let a be the item in M [i1; :::; id] immediately after the ((n � 1)d � k2)th step. Thedestination of a depends on the initial contents of the stretching region. By assigningdi�erent initial values to the processors in the stretching region, we can force item a intoS + 1 di�erent positions. These di�erent positions form a chain of length S, and should bewithin the residing region since the computing time is T � 1. 22



4 A poor indexing schemeKunde [4,5] has shown that within the leading term, (2d� 1)n steps are the asymptoticallyoptimal computing time for sorting nd items into snake-like order. We show the existenceof a poorer indexing scheme than the snake-like indexing scheme.Lemma 4.1. Let M [i1; :::; id] be a corner, If 1 � k � n, thenkd=d! � jCREG((i1; :::; id); k)j< (k + d� 1)d=d!.Proof. Follows immediately from jCREG((i1; :::; id); k)j =  k + d� 1d !. 2Theorem 4.2 There exists an indexing scheme such that any algorithm for sorting nd itemsby the indexing scheme on M [(1; :::; n)d] takes at least 2dn� 2d(d!)1=dn1=2e � 2d+ 1 steps.Proof. Let k = d(d!)1=dn1=2e. We assume that d(d!)1=dn1=2e < n. Consider the sweep(CREG((1; ::; 1); d(n� 1)� k+ 1), CREG((n; :::; n); k)). The length of the sweep is 2dn�2d(d!)1=dn1=2e � 2d + 1. From Lemma 4.1 the cardinality of the stretching region is notsmaller than dnd=2e. We de�ne an indexing scheme as follows: The �rst dnd=2e sortedpositions are in the residing region, the (dnd=2e + 1)st sorted position is in the stretchingregion, the next dnd=2e sorted positions are in the residing region, the (2dnd=2e+2)nd sortedposition is in the stretching region, and so on. Then the length of the longest chain in theresiding region is dnd=2e � 1. This length is smaller than the cardinality of the stretchingregion. Therefore, from the Chain Theorem this theorem holds. 25 Cardinality of various regionsThe union of k-corner regions is de�ned by[(i1;:::;id)2f1;ngdCREG((i1; ::; id); k)and denoted by UCREG(k; d).Lemma 5.1. Let tn � k � (t + 1)n, 0 � t � d � 1. Then for each (c1; :::; cd) in f1; ngd,the following inequalities hold:kdd! � (k � n)d(d� 1)! + (k � 2n)d2!(d� 2)! � � � �+ (�1)t (k � tn)dt!(d� t)!< jCREG((c1; :::; cd); k)j< (k + d� 1)dd! � (k � n+ d� 1)d(d� 1)! + (k � 2n+ d� 1)d2!(d� 2)! ����+(�1)t (k � tn + d� 1)dt!(d� t)! .Proof. Let us �rst evaluate the volume of a region on the d-dimensional real space. LetR(k) be f(i1; :::; id)j for each j (1 � j � d) ij is a positive real number, and Pdj=1 ij < kg,and let V (k) be f(i1; :::; id)j for each j (1 � j � d) ij is a positive real number not greaterthan n, and Pdj=1 ij < kg. If S is a region on the d-dimensional real space, the volume ofS is denoted by jjSjj. Then 3



jjR(k)jj= Z k0 dx1 Z k�x10 dx2 � � � Z k�Pd�1i=1 xi0 dxd = kdd! .Since CREG((c1; :::; cd); k) includes V (k) and is included in V (k + d � 1), jjV (k)jj <jCREG((c1; :::; cd); k)j < jjV (k + d � 1)jj. Let fa1; :::; adg be the set of properties on ele-ments in R(k), where ai is the property that the value of the ith coordinate is greater thann. Let R(ai; k) be the subregion of R(k) having property ai, and let N(ai) be the volumeof R(ai; k). We also de�ne R(a0i; k) as the subregion of R(k) not having property ai andN(a0i) as the volume of R(a0i; k). Since an element in R(k) can have more than one property,we also use the following notations: N(ai1; :::; ait) is the volume of the subregion of R(k)having properties ai1 ; :::; ait and N(a0i1; :::; a0it) is the volume of the subregion of R(k) nothaving properties ai1 ; :::; ait. Then jjV (k)jj = N(a01; :::; a0d). From the principle of inclusionand exclusion [8], jjV (k)jj = jjR(k)jj �PN(ai1) +PN(ai1; ai2) � PN(ai1; ai2 ; ai3) + :::+ (�1)dN(a1; a2; :::; ad), where the sum of PN(ai1; :::; ait) is taken over all combinationsof t properties. If k � tn, then all the terms after the tth term in the right-hand side ofthe above formula are 0. By a simple integration we have N(ai1; :::; ait) = (k � tn)d=d! ifk � tn. HencejjV (k)jj = kdd! �  d1 ! (k � n)dd! +  d2 ! (k� 2n)dd! � � � �+ (�1)t dt ! (k � tn)dd!= kdd! � (k � n)d(d� 1)! + (k � 2n)d2!(d� 2)! � � � �+ (�1)t (k � tn)dt!(d� t)!if k � tn. 2Lemma 5.2. If tb12nc � k � (t+ 1)b12nc and 0 � t � d� 1, then(2k)dd! � (2k � n)d(d� 1)! + (2k � 2n)d2!(d� 2)! � � � �+ (�1)t (2k� tn)dt!(d� t)! � jUCREG(k; d)j� (2(k+ d� 1))dd! � (2(k+ d� 1)� n)d(d� 1)! + (2(k + d� 1)� 2n)d2!(d� 2)!� � � �+(�1)t (2(k+ d� 1)� tn)dt!(d� t)! .Lemma 5.3. If (d� t � 1)b12nc � k � (d� t)b12nc and 0 � t � d� 1, thennd � (dn� 2k)dd! + ((d� 1)n� 2k)d(d� 1)! � ((d� 2)n� 2k)d2!(d� 2)!+ � � �+(�1)t+1 ((d� t)n� 2k)dt!(d� t)!� jUCREG(k; d)j � nd � (dn� 2(k+ d� 1))dd! + ((d� 1)n� 2(k+ d� 1))d(d� 1)!�((d� 2)n� 2(k + d� 1))d2!(d� 2)! + � � �+ (�1)t+1 ((d� t)n� 2(k+ d� 1))dt!(d� t)! .4



The proofs of Lemmas 5.2 and 5.3 are similar to that of Lemma 5.1 and are given in [2].The values of the formulae bounding jUCREG(k; d)j in Lemma 5.2 are exactly the same asthe values of the formulae in Lemma 5.3. If k � 14dn, then the evaluation of jUCREG(k; d)jby Lemma 5.2 is easier than by Lemma 5.3, and otherwise the evaluation by Lemma 5.3 iseasier than by Lemma 5.4.6 A lower bound for an arbitrary sorting orderTheorem 6.1. Let V = jUCREG(k1; d)j and jCREG((1; :::; 1); k2)j � nd � d12V e, where1 � k1; k2 � (n� 1)d+1. Then a lower bound for sorting nd items by any indexing schemeon the d-dimensional mesh-connected model is 2d(n� 1)� k1 � k2 + 1 steps.Proof. We consider an arbitrary indexing function I on M [(1::n)d]. There exists a position(i.e., a processor) in UCREG(k1; d) such that d12V e � I(b) � nd � b12V c + 1 or b12V c �I(b) � nd�d12V e+1. Such a position b is in at least one corner region CREG((i1; :::; id); k1).Consider the sweep, (CREG((i1; :::; id), (n�1)d�k1+1), CREG((i1; :::; id); k2)). Since b isoutside the residing region, the length of the longest chain in the residing region is at mostnd � d12V e � 1. Since the cardinality of the stretching region is not less than nd � d12V e,from the Chain Theorem a lower bound for sorting nd items by indexing function I on themodel is 2d(n� 1)� k1 � k2 + 1 steps. 2Good time lower bounds for arbitrary sorting order can be obtained from Theorem 6.1by minimizing the value of k1 + k2. Although it is di�cult to give a general formula ofthe maximized lower bound as a function of n and d, we can numerically derive it for anarbitrary d by using Lemmas 5.1-5.3. Since we are mainly interested in asymptotic lowerbounds, we hereafter omit minor terms, ceilings and 
oors in formulae.From Lemma 5.2, V = jUCREG(n; d)j � ((2n)d � dnd)=d!. If the cardinality ofCREG((i1; :::; id); r) is not less than nd � 12V , from Theorem 5.2 a lower bound for sortingnd items on the d-dimensional model is (2d� 1)n� r steps. In this case there exists such rin the range between (d� 1)n and (d� 2)n. Let r = (d� 1� t)n, where 0 < t < 1. ThenjCREG((i1; :::; id); r)j � nd � 12V if and only if (1 + t)d � dtd � 12(2d � d). Let t + 1 =(12(2d�d))1=d. Then jCREG(i1; :::; id); r)j � nd� 12V . Therefore, ((12(2d�d))1=d+d�1)n isa time lower bound for sorting nd items on the model. Hence we have the next proposition.Proposition 6.2. A time lower bound for sorting nd items into an arbitrary order on thed-dimensional mesh-connected model is ((12(2d � d))1=d + d� 1)n steps.Better lower bounds can be obtained directly from Theorem 6.3. For d = 2 we choosek1 = (1�16p6)n and k2 = (2�13p6)n. Then jCREG(i1; :::; id); k2)j � n2�12 jUCREG(k1; d)j.Therefore, from Theorem 6.3, 4n� k1 � k2 � 2:2247n is a time lower bound [1].Theorem 6.3. An asymptotic time lower bound for sorting n2 items into any sorting orderon the 2-dimensional mesh-connected model is (1 + 12p6)n � 2:2247n steps.For d = 3, let k1 = 0:87n and k2 = 1:7294n; for d = 4, let k1 = 1:12n and k2 = 2:2667n;for d = 5, let k1 = 1:395n and k2 = 2:7893n. From Theorem 6.3 we have the followingtheorems.Theorem 6.4. An asymptotic time lower bound for sorting n3 items into any sorting orderon the 3-dimensional mesh-connected model is 3:4086n steps.Theorem 6.5. An asymptotic time lower bound for sorting n4 items into any sorting orderon the 4-dimensional mesh-connected model is 4:6133n steps.5



Theorem 6.6 An asymptotic time lower bound for sorting n5 items into any sorting orderon the 5-dimensional mesh-connected model is 5:8207n steps.Time lower bounds listed in Theorems 6.4-6.6 are the best ones obtainable from Theorem6.1. These are better than lower bounds obtained from Proposition 6.2.References[1] Y. Han and Y. Igarashi, Time lower bounds for sorting on a mesh-connected pro-cessor array, in: Proc. 3rd Aegean Workshop on Computing, Corfu, Greece, LectureNotes in Computer Science 319 (Springer, Berlin, 1988) 434-443.[2] Y. Han and Y. Igarashi, Time lower bounds for parallel sorting on multi-dimensionalmesh-connected processor arrays, Techn. Report TR No. 107-88. Dept. Comput. Sci.,Univ. of Kentucky-Lexington, 1988.[3] Y. Han, Y. Igarashi and M. Truszczynski, Indexing functions and time lower boundsfor sorting on a mesh-connected computer, Techn. Report TR 114-88, Dept. of Com-put. Sci., Univ. of Kentucky, 1988.[4] M. Kunde, Lower bounds for sorting on mesh-connected architectures, Acta Inform.,24 (1987). 121-130.[5] M. Kunde, Optimal sorting on multi-dimensionally mesh-connected computers, in:Proc. 4th Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Com-puter Science 247 (Springer, Berlin, 1987) 408-419.[6] H.-W. Lang, M. Schimmler, H. Schmech and H. Schr�oder, Systolic sorting on amesh-connected network, IEEE Trans. Comput., 34 (1985) 652-658.[7] Y. Ma, S. Sen and I.D. Scherson, The distance bound for sorting on mesh-connectedprocessor arrays is tight, in: Proc. 27th IEEE Symp. on Foundations of Comput.Sci. (1986) 255-263.[8] F.S. Roberts, Applied Combinatorics (Prentice-Hall, Englewood Cli�s, NJ, 1984).[9] K. Sado and Y. Igarashi, A divide-and-conquer method of the parallel sort, IECE ofJapan, Techn. Commit. of Automata and Languages, AL84-68, 1985, 41-50.[10] C.P. Schnorr and A. Shamir, An optimal sorting algorithm for mesh-connected com-puters, in: Proc. 18-th ACM Symp. on Theory of Computing, (1986) 255-263.[11] C.D. Thompson and H.T. Kung, Sorting on a mesh-connected parallel computer,Comm. ACM 20 (1977) 263-271. 6


