Shortest Paths on a Polyhedron,
Part I: Computing Shortest Paths!

JINDONG CHEN and YIJIE HAN

Department of Computer Science
University of Kentucky
Lexington, KY 40506, USA

Abstract

We present an algorithm for determining the shortest path between
any two points along the surface of a polyhedron which need not be convex.
This algorithm also computes for any source point on the surface of a
polyhedron the inward layout and the subdivision of the polyhedron which
can be used for processing queries of shortest paths between the source
point and any destination point. Our algorithm uses a new approach
which deviates from the conventional “continuous Dijkstra” technique.
Our algorithm has time complexity O(n?) and space complexity ©(n).
Keywords: Shortest path, motion planning, nonconvex polyhedron, single
source shortest path, computational geometry, computational robotics.

1 Introduction

Recent research interest in the field of robotics, terrain navigation, and in-
dustrial automation has promoted the study of motion planning. One of the
basic problems in motion planning is to find the shortest path. The short-
est path problem has several versions. The shortest path problem in the two-
dimensional situation with polygonal obstacles can be solved by constructing
a visibility graph.[9, 11, 12, 13, 23] The known fastest algorithm by Reif and
Storer[19] achieves time O(nk + nlogn), where n is the number of vertices
and k is the number of disjoint simple polygons. Certain special cases in the
two-dimensional situation have also been identified with shortest path problem
solvable in O(nlogn) time.[10, 13, 23] The shortest path problem in the general
3-dimensional situation is NP—hard[4] and only exponential time algorithms
are known.[3, 20, 23] An important special case in the 3-dimensional situation
is the shortest path problem along the surface of a single polyhedron. The sin-
gle source shortest path problem asks the construction of the subdivision on the

1Research supported in part by grant from University of Kentucky Center for Robotics
and Manufacturing Systems. A preliminary version of the paper was presented on the 1990
Annual ACM Symposium on Computational Geometry.
Authors’ current address: Jindong Chen, Department of Computer Science, Purdue Univer-
sity, West Lafayette, IN 47907.
Yijie Han, Electronic Data Systems, Inc., 37350 Ecorse Rd., Romulus, MI 48174.

surface of the polyhedron such that the shortest path between a fixed source
point and any destination point can be reported quickly.

The single source shortest path problem for a single convex polyhedron was
first studied by Sharir and Schorr.[23] Their algorithm runs in O(n®logn) time,
where n is a measure of the complexity of the scene which we may take as the
number of edges of the polyhedral surface. After building the subdivision, the
shortest path problem can be transformed into a point location problem and the
shortest path from the fixed source point to a given query point can be computed
in time O(k+logn), where k is the number of edges in the corresponding shortest
path edge sequence.

An improved algorithm for a convex polyhedron was given by Mount[15]
which reduces the running time to (n? logn). For an arbitrary polyhedron, which
need not be convex, O’Rourke, Suri, and Booth gave an O(n®) algorithm.[17]
Subsequently, Mitchell, Mount, and Papadimitriou presented an O(n?logn)
algorithm.[14]

All the previous algorithms for the problem can be regarded as preprocessing
of the polyhedron which builds a subdivision on the polyhedron surface such
that points in a region of the subdivision have the same shortest path edge
sequence. Our algorithm accomplishes the same task.

The essence of a technique called “continuous Dijkstra”[14] is used in the pre-
vious designs.[15, 23] Mitchell et al.[14] were the first to formalize and generalize
the technique, and gave the name of “continuous Dijkstra”.[14] In an applica-
tion of this technique,[14, 15, 23] certain entities (vertices, edges, or faces) are
treated as nodes in a graph, and the entity of the shortest distance from the
source point is always extracted for expansion as in the Dijkstra’s algorithm.[7]
To facilitate the extraction of the entity of the shortest distance, a priority queue
of entities is maintained.[14, 15, 23]

In this paper we present a new algorithm for the single source shortest path
problem on the surface of a polyhedron which need not be convex. Our algo-
rithm uses a rather different approach. It does not have the features of the
Dijkstra’s algorithm. In particular, we do not maintain a priority queue and
the expansion of entities in our algorithm is not necessarily performed upon
those of the shortest distance from the source. Our algorithm has a very sim-
ple structure. The simplicity comes from our new observations of the problem.
The observation “one angle one split” (Section 3) results in upper bounding the
number of branches in the sequence tree. Yet another observation (Section 4)
gives the new inward layout of the polyhedron which can be viewed as a dual
of the outward layout of Sharir and Schorr.[23] This inward layout results in
computing the Voronoi diagram once for all faces instead of once for each face
as in the previous designs. The time complexity of O(n?) we have achieved
is a consequence of these observations. Besides, we are able to maintain the
sequence tree with merely O(n) nodes, thus achieving optimal space complexity
©(n) for our algorithm.

Our recent work[6] extends the results presented here. Previously, Sharir and

Schorr[23] uses O(n?) space to store shortest path information for a convex poly-
hedron. Mount achieved space complexity O(nlogn) for storing shortest path
information. For a nonconvex polyhedron O(n?) space is achievable,[14] but no
result better than O(n?) has been claimed. We have a scheme for storing the
shortest path information in O(nlogn/logd) space to support the processing
of a query in O(dlogn/logd) time, where 1 < d < n is an adjustable integer.[6]

Parallel but independent of our work, Aronov et al.[l] and Aronov and
O’Rourke[2] studied the inward layout of convex polyhedrons which they termed
star unfolding of polyhedrons. Aronov and O’Rourke[2] proved that the inward
layout of a convex polyhedron does not overlap. This result simplifies the com-
putation of the Voronoi diagram for the inward layout in our algorithm in the
convex polyhedron case. The time and space complexities of our algorithm are
not affected by their results.

The rest of the paper is organized as follows. For a clear exposition, from
section 2 through section 4 we restrict our discussion to the case of a convex
polyhedron. In section 2 we review some preliminary knowledge of shortest
paths on the surface of a polyhedron. In section 3 we present an algorithm
for building the sequence tree with O(n) branches. This algorithm establishes
the fact that a shortest path from a source to a destination can be computed in
O(n?) time and ©(n) space. In section 4 we present the details of computing the
inward layout and building the subdivision. In section 5 we adapt the algorithm
to the nonconvex case. Conclusions are given in section 6.

2 Preliminary

Let P be a polyhedron. The surface of P consists of a set F' of faces f;, a set
FE of edges e;, a set V of vertices v;, a set © of angles 6;. The angles formed
by the edges of faces are used later to demonstrate the important property of
shortest paths, namely “one angle one split.” Let n be the complexity of the
polyhedron, where n can be the numbers of edges, vertices, faces, and angles.

In order to obtain a uniform model easy to work with, we triangulate all
the faces of the given polyhedron and also triangulate the face containing the
source point S, so that S becomes a vertex, as is done in Ref. [14, 15]. This
process takes O(n) time, where n is the number of edges of the polyhedron.[5]
After triangulation the complexity of the given polyhedron remains the same,
i.e., the number of edges is still O(n).

Unfolding is a method used in studying shortest paths. Assume fi, e, fa,
€2,y fis €iy fit1y-ery €m—1, fm 1s a sequence of faces and edges, where e; =
fi N fiy1, and f1 is a face whose boundary contains the source point S. The
procedure of unfolding this sequence can be described as

F={fi}
fori:=1tom—1do
Rotate F' around e; until

F, fi+1 are co-plane and lie on
different sides of e;;
F:=FU {ei, fi+1}~
Upon finishing, all the faces are unfolded into a common plane £. Any
shortest path 7 passing through these faces is unfolded into a straight line
segment 7.[23] We call the edge sequence eq,eq,...,e; traversed by a shortest
path a shortest sequence.

No shortest paths can pass
through ey, e, ... eg.

Figure 1: A nonshortest sequence.

Certain edge sequences are not shortest sequences, i.e., no shortest path can
traverse such a sequence, as shown in Fig. 1. We can avoid these sequences
by maintaining on each edge e; source image I.,, the image of the source point

S in the planar coordinate system of face f; upon unfolding, and Projéfi, the
projection of I., on edge e; which is a closed segment such that the shortest
path to any point P in the segment through the sequence eq,es,...,e;_1 can be
unfolded into a straight line segment (such a locally optimal path is called a
geodesic path[14, 23])? (Fig. 2.). That is, for any point P in Projelf’i we can
connect I, and P with a straight line segment which traverses only the edges
e1, €2, ...,6;—1, where €; is the image of e; in the planar coordinate system of
face f; upon unfolding. It is easy to compute the I., and Projelfi using I, ,

e, e, . . . e,
and Proje.';". Proje;* is the intersection of e; and the shadow of Proje,' ;' on

face f; (Fig. 3.). We unfold f;1 around e; only if Projelfi is not empty.
The following properties for shortest paths on a convex polyhedron are also

known.[15, 23]

(1) No face can be passed by a shortest path more than once. Therefore, a

shortest path cannot pass more than n faces, where n is the total number of

I, I,
2We use simplified notation I, and Projef” here. In fact I, and Projef’ defined here
depend on ey, ea, ..., €;_1, €;.

Projel

Figure 2: Geodesic path.

Shadow of Projg1

Figure 3: Projection.

faces of the polyhedron.
(2) Two shortest paths cannot intersect each other except possibly at the source
point or the destination point.

Since shortest paths do not intersect each other, the set of shortest paths to
the vertices of the polyhedron can be arranged into a circular order according
to the angles at which they emanate from the source.

A ridge point is a point having more than one shortest paths from the source
point S.[23] If no vertex is a ridge point, the circular order for shortest paths
to the vertices can be viewed as a circular order for vertices except the source
(which can also be a vertex). When vertex v is a ridge point having k shortest
paths, we may extend the circular order for vertices by creating k& duplicates of
v (including the original v) and have these duplicates arranged into the circular
order. Thus we induce a circular order for the vertices of the polyhedron from
the circular order of the shortest paths to the vertices.

3 Sequence Tree

Based on what we have discussed in the previous section, a naive algorithm can
be devised for the problem.

Decomposition

Figure 4: Decomposition.

We decompose an edge into two oriented edges as in Ref [15], such that the
image source can only be on the left side of the oriented edge (Fig. 4.). The
term edge we used in the following text of this section is meant to be an oriented
edge unless otherwise stated. The face to the other side of an oriented edge is
the edge’s shadowed face. A face can be the shadowed faces of three of its edges.
We can view a face as having three layers each of which is a shadowed face of

one of its edges. The following algorithm builds a tree called a sequence tree.
A node in this tree other than the root is a triple, n’ = (e, I, Projl), where I is
the image source of e. We say node n’ is on edge e, e is the edge of n’, and n'’s
shadow is the shadow of Projl.

Algorithm 1
I. root:=S8;
for all the edges e opposite to S do
insert (e, .S, e) as root’s child;
/* e is an edge of the face containing S.*/
/* S is a vertex after triangulation. */
II. fori:=1tondo
/* n is the number of the faces. */
for all the leaves (e, I, Projl) at the ith level do
begin
unfold I about e to I;
/* I is co-planar with AABC,*/
/* the shadowed face of e. */
for ¢’ := AB,CA do
calculate ijel,;

if Projz/ nonempty then
insert (e’, 1, Projl,) as
(e, I, Projl)’s child;
end

Theorem 1: All shortest sequences starting from S are among the path se-
quences computed in Algorithm 1.
Proof: When the tree is built, each node in the tree defines an edge sequence
which consists of those edges which are edges of the nodes on the way from the
root up to this node. For a point p on face f; such that p is contained in node
D’s shadow, node D guarantees the existence of a geodesic path to p through
the edge sequences defined by node D. By selecting the node whose sequence
corresponds to the shortest distance of p from S, we can find the shortest path
for p. Algorithm 1 is correct because the shortest path can be unfolded into a
straight line and the number of faces passed by the shortest path is no more
than n. |
The tree could have an exponential number of nodes because all the nodes
whose shadows cover the opposite angle have two children in the tree (Fig. 5.).
We now prove that at most one node among those whose shadows cover the
same angle can have two children.
Lemma 1: Given on the same edge CB of AABC' two nodes ni and ne whose
shadows cover A, the vertex of /CAB, at most one of them can have two children
which can be used to define shortest sequences.

Two children, (e, I,Projgl) and (e, I,Projé)

Figure 5: Path splitting.

Figure 6: Two sequences meet at vertex A.

Proof: Unfold I,,, I,,, the source images of n; and ny around CB, to be
coplanar with AABC (Fig. 6.). I,,, I,,, are the source images after unfolding.
If |I,,, A] < |I,,,A], then the shorter paths to points on AB and C'A which are
sufficiently close to A are paths passing through the edge sequence represented
by my, therefore ni’s two children can be used to define shortest sequences
while only one of ns’s children can be used to define a shortest sequence. By
the same reason, if |I,,, A| > |I,,, A| then ny’s two children can be used to define
shortest sequences while only one of n1’s children can be used to define a shortest
sequence. Finally, if |I,, A| = |I,,, A|, then n; ties ny, and both n; and ny have
at most one child which can be used to define a shortest sequence. O

With Lemma 1 we only let the node n’ which is the closest to the angle
fork into two children. We say n’ occupies the angle. If we maintain “one
angle one split” in our sequence tree, the number of leaves of the tree will be
reduced to O(n), because there are O(n) angles in the polyhedron. When a leaf
n' = (BC,Ipc, Projlg%c) on edge BC' of face AABC is being processed, if its
shadow doesn’t cover A, insert the only child it can have. If its shadow covers
A, first check if it can occupy ZCAB. If not, insert the only child it can have.
Otherwise, insert its children and mark ZCAB as occupied by n'. If n” is the
node which previously occupied /C AB, clip off one of its children according to
Lemma 1 and delete the subtree rooted at this child.

Algorithm 2
I. root:=S5;
for all the edges e opposite to S do
insert (e, .S, e) as root’s child;
II. fori:=1tondo
/* n is the number of faces. */
for all the leaves n’ = (e, I, Projl) at the ith level do
begin
unfold I about e to I;
/* T is co-planar with AABC,*/
/* the shadowed face of e. ~ */
calculate Projl 5, and Projl ,;
/* the projections on AB,CA. */
if n”’s shadow covers A then
if n’ can occupy ZCAB over n”,
/* n previously occupied ZCAB.*/
then
(a) clip off one of n"’s two children
that cannot possibly define a
shortest sequence and delete the
subtree rooted at this child;

insert (AB,T, Projh),

(CA,I, Prong) as n'’s children;
mark /CAB as occupied by n’;
else /* n’ cannot occupy the angle. */

calculate Projl,,
/* €' is either C A or AB whichever */
/* possibly defines a shortest sequence. */
insert (¢/, I, Projl,);
as the sole child of n';
else /* n'’s shadow does not cover A */

e’ := either AB or C'A which is nonempty;

insert (e’, 1, Projl,) as the sole
child of n/, accordingly;

end

Theorem 2: All shortest sequences starting from S are among the path se-
quences computed in Algorithm 2.
Proof: By Lemma 1, the only nodes deleted in algorithm 2 were those found
incapable of defining a shortest sequence. Therefore, all shortest sequences are
contained in the output tree. m]
Theorem 3: Algorithm 2 runs in O(n?) time.
Proof: The property of “one angle one split” is maintained throughout the
execution of Algorithm 2. Thus after an iteration of the loop in Algorithm 2, the
tree has only O(n) leaves. For the moment, consider only the time consumed
in generating the tree, not the time consumed in deleting subtrees in step (a).
Since there are O(n) leaves after each iteration of the loop, it takes O(n) time
to generate the next level of the tree, thus resulting in a total of O(n?) time for
generating the tree. Now consider the time consumed in step (a) for deleting the
subtrees. It can be calculated by a counting trick. When we are generating the
tree, we allow two time units for each node generated, one is used for generating
the node, the other is saved (may be considered as labeled on the node). If
the node is later deleted, then the saved time unit can be used. Thus the time
complexity of Algorithm 2 is O(n?). a
It will be clear later on that the essential piece of information generated by
Algorithm 2 is the collection of shortest paths to the vertices of the polyhedron.
In order to record this information, we introduce the vertex node into the se-
quence tree. A vertex node is a triple (e, I,v), where v is a vertex, e is an edge,
and [is a source image. Let a be a current node on edge C'B in the sequence
tree. a’s children is to be generated. If a occupies or ties with another node on
CB at LCAB, node (CB,I¢p,A) will be inserted as one of a’s children. For
a vertex node (e, I,v), we use pointers to link it to vertex v and edge e. After
the sequence tree is built, the shortest distance to vertex v can be found by
examining vertex nodes linked to v. The shortest path to vertex v can then be
traced out on the sequence tree.

10

We note that the information on shortest paths to vertices can be obtained
from Algorithm 2 using merely O(n) space. In the process of generating the
sequence tree we need only keep the leaves and the interior nodes which have
more than one child in the current tree. If a leaf in the current tree generates
only one child at the next level, the leaf will be discarded and replaced by its
child. The sequence tree thus generated will have more than one child for each
of its interior nodes. For each angle, we store the node which occupies the angle.
If there are several nodes which tie on the same angle we store the two outmost
tying nodes for the angle. For two nodes n; and ns in the sequence tree, where
ng is a child of ny, we can trace out the sequence of edges from n; to ny by
starting from mn; and, at each angle, comparing the nodes stored for the angle
to decide which edge of the angle is in the edge sequence. Thus the time taken
for tracing out the edge sequence from n; to ng is proportional to the number
of edges in the edge sequence.

In computing the inward layout in section 4 we need the circular order of
the shortest paths to the vertices of the polyhedron. Initially the children of the
root in the sequence tree can be arranged by the circular order. This circular
order can be maintained if we take care when generating the next level of the
sequence tree. When the sequence tree is built, the circular order of the shortest
paths to the vertices of the polyhedron can be obtained by a traversal of the
tree.

We also note that, if we treat the destination as a vertex, we obtain imme-
diately the following corollary to Theorem 2:

Corollary: The shortest path between two points can be computed in O(n?)
time and O(n) space.

Note that if there are multiple shortest paths to vertex v, all of them can be
found by examining the nodes of the form (e, I, v) in the sequence tree.

4 Subdivision

The purpose of computing the subdivision of the polyhedron is mainly to store
the shortest path information for quick retrieval. The task of computing the
subdivision used to be done[14, 15, 23] by computing the Voronoi diagram on
each face of the polyhedron. Our scheme allows the computation of the Voronoi
diagram to be done once for all faces of the polyhedron. We first compute the
inward layout of the polyhedron. We then compute the Voronoi diagram on
the layout. Both can be done in O(n?) time and O(n) space. The problem of
storing the shortest path information for retrieval is addressed at the end of the
section.

11

4.1 Layouts

The planar layout of the surface of a convex polyhedron due to Sharir and
Schorr[23] is obtained by cutting all the ridge lines. After cutting the ridge
lines the surface of the polyhedron can be laid out on a plane. The layout is a
star-shaped polygon. The edges of the polygon are the ridge lines. The vertices
of the polygon are either vertices of the polyhedron or the Voronoi vertices on
the ridge lines. Such a star-shaped layout is shown in Fig. 7.

N

Figure 7: Outward layout.

Here we give a new layout which is obtained by cutting the shortest paths
from the source point to the vertices of the polyhedron.

To be formal, we define the planar layout of a set of faces F as the image
of F on a plane through a set of transformations 7 which transforms each face
in F to the plane; T preserves the shape and the connectivity of faces, i.e., two
faces which are on different sides of an edge before transformation must have
their images on different sides of the image of the edge after transformation.
We have the following theorem.

Theorem 4: The surface of a polyhedron cut by the shortest paths to the vertices
of the polyhedron can be laid out on a common plane.
Proof: We cut the surface of the polyhedron along the shortest paths to each

12

7

Figure 8: Inward layout.

13

vertex (Fig. 8). If there are more than one shortest paths to a vertex, we cut
an arbitrary one shortest path to that vertex. Some of the faces will be divided
into pieces(call them regions) by the cutting. Draw a dual graph D of these
regions. Take each region as a vertex of D (we take those faces which have
not been cut by the shortest paths to the vertices of the polyhedron as a single
region containing the whole face). Two vertices are connected by an edge if
the corresponding regions share a common (undirected) edge of the polyhedron.
The edges of D do not intersect the cut shortest paths to the vertices of the
polyhedron. Graph D is acyclic. For, if there were a cycle in D, this cycle
would cut the surface of the polyhedron into two parts. There would then exist
a vertex D of the polyhedron in the part which does not contain the source
point S. Thus the shortest path from S to D would intersect the cycle. A
contradiction.

Starting from a region, unfold the regions which share a common edge with
this region into a common plane £. Since the dual graph D is acyclic, we will
not come back to the same region no matter in what direction we unfold the
regions. Therefore, we can unfold all the regions into a common plane. a

The layout obtained is also a star-shaped polygon. The edges of the layout
polygon are the shortest paths from the source to the vertices of the polyhedron.
The vertices of the layout polygon are the images of the source. Such a star-
shaped layout is shown in Fig. 8.

We shall call the layout due to Sharir and Schorr[23] the outward layout, for
shortest paths emanate from the center, i.e. the source point, outwards toward
the destinations, and we shall call the layout presented here the inward layout,
where a shortest path from the source to a destination goes inwards toward the
interior of the layout polygon.

In a layout (either an inward layout or an outward layout), the vertices of the
polyhedron, except the source, can be arranged into a circular order according to
the circular order of the shortest paths to the vertices. If we connect the adjacent
vertices in the circular order by straight line segments, these line segments form
a closed curve. For each line segment, we define its inside to be the side of
the source image. Therefore this closed curve decomposes the surface of the
polyhedron into two regions. The region containing the source is called the
arctic while the other region is called the antarctic. This closed curve is called
the equator of the polyhedron with respect to the given source point.

Layouts are important constructs in storing shortest path information. In
particular, the inward layout enables us to compute the Voronoi diagram once
for all faces.

We note that Agarwal et al.[1] made similar observations about the inward
layout independently. Aronov and O’Rourke[2] recently showed that the inward
layout for a convex polyhedron does not overlap. Before their results we treated
the inward layout as if it were overlapped because this is inevitably the case
for nonconvex polyhedrons. The nonoverlap property for convex polyhedrons is
not essential in our scheme, but it helps simplify our algorithm in the case of

14

convex polyhedrons.

Below we give an algorithm for computing the inward layout using the se-
quence tree as input. Note that we do not store the intersection between edges
of the polyhedron and the shortest paths to the vertices of the polyhedron. Thus
the inward layout can be represented by O(n) line segments.

Algorithm 3:
I. Traverse the sequence tree to obtain the
circular order of vertices on the layout;
II. For every two consecutive vertices in
the circular order do
compute their shortest paths from S;
cut the surface along these two paths;
unfold the portion of the surface
until the two paths co-plane on plane L;
Theorem 5: Algorithm 3 computes the inward layout of a polyhedron in O(n?)
time and O(n) space.
Proof: Since shortest paths to vertices are cut and surface of the polyhedron is
unfolded, we obtain the inward layout. A traversal of the tree, and the cutting
and unfolding of the surface take O(n?) time and O(n) space. a

4.2 Voronoi Diagram and Subdivision

After the layout is built, the source point S has O(n) images on the layout. We
now compute a Voronoi diagram with respect to these images. The layout is
divided into regions by the Voronoi diagram. The points in the same region are
closer to the corresponding image of S than to other images, and their shortest
paths to S pass the same edge sequence.

Within the antarctic on the inward layout, the Voronoi diagram is a tree
of O(n) edges, and each leaf of the tree is a vertex of the polyhedron (Fig.
8.).[23] O(nlogn) time and O(n) space are sufficient for computing the Voronoi
diagram.[22] We omit the details of constructing the Voronoi diagram here be-
cause in the next section we will outline the construction of the Voronoi diagram
for the more complicated case of nonconvex polyhedron.

Theorem 6: The subdivision of the surface of a polyhedron can be computed
in O(n?) time.

Proof: The subdivision of the surface of the polyhedron can be obtained by
finding the intersection of the faces of the polyhedron with the ridge lines and
the shortest paths to the vertices. Ridge lines, when laid out on the inward
layout, are the edges of Voronoi diagram. Thus we can obtain the subdivision
by picking edges of the Voronoi diagram and shortest paths to the vertices on
the inward layout, and wrapping them on the surface of the polyhedron. These
operations take O(n?) time. |

Since there are O(n?) regions in the subdivision, it requires O(n?) space for
storing the subdivision. Note that our algorithm for computing the subdivision

15

uses O(n) space except for the storing of the regions in the subdivision. The
subdivision can be used to answer queries of shortest path.[14, 15, 23]
Theorem 7: After the subdivision of a polyhedron is built, the length of the
shortest path from the source point to a query point can be determined in time
O(log n) while the shortest path can be determined in time O(logn+k), k is the
number of edges the shortest path passes through.
Proof: Given a query point @ on face f of the polyhedron, by performing a
point location on the subdivision of face f, we obtain the length of the shortest
path to @ as in Ref. [14, 15, 23]. The point location can be done in time
O(logn) by known point location techniques.[8, 18] The shortest path can be
determined by tracing the regions back to the source point, which can be done
in time O(k + logn), where k is the number of edges passed by the shortest
path. O
Our recent work[6] shows that the shortest path information can be stored in
O(nlogn/logd) space to support the processing of a query in O(dlogn/logd)
time, where 1 < d < n is an adjustable integer. This result enables us to cut the
overall space requirement of our algorithm to O(nlogn/logd) while supporting
the processing of a query in O(dlogn/logd) time.

5 Nonconvex Case

Complications under the nonconvex case are discussed in this section. Our
treatment of nonconvex polyhedrons follows that of Mitchell et al..[14]
Theorem 8: The sequence tree for a nonconvex polyhedron can be built in
O(n?) time and ©(n) space.

Proof: If a polyhedron is nonconvex, it is possible for a shortest path to pass
through some vertices.[14] Suppose v is the last vertex on the shortest path
from source S to a destination D. The shortest path from source S consists
of the shortest path from S to v and the shortest path from v to D. We
may view each vertex v as a pseudo-source with an initial distance equal to
the length of the shortest path from S to v. S itself is a pseudo-source with
0 as its initial distance. We use two kinds of nodes in the sequence tree. A
node is either a vertex node which is a pair (v,0) or an edge node which is a
quadruple (e, I, Projl,§), where § is the shortest distance known so far from S
to a pseudo-source v and I is the image of v. The length of shortest path to a
destination D through v is 6 4+ |DI|. An edge node can have at most two edge
nodes and one vertex node as its children. A vertex node can have at most twice
as many children as the number of edges incident with it. Half of them are edge
nodes and half of them are vertex nodes. Accordingly, the principle “one angle
one split” needs to be modified slightly for the nonconvex case. Only the edge
nodes which occupy an angle can have three children. Therefore each angle
in the polyhedron contributes at most two more leaves in the sequence tree.
The total number of leaves in the sequence tree contributed by all angles of the

16

polyhedron is O(n). Vertex node n; = (v;,d;) can have at most 2m; children,
where m; is the number of edges incident with v;. Although a vertex can be
occupied more than once, we need at most one vertex node for each vertex of
the polyhedron in the sequence tree. Thus the total number of leaves in the
sequence tree contributed by all vertex nodes is O(n). Therefore the number of
leaves at any time during an execution of Algorithm 2 is O(n). The correctness
of Theorem 8 follows. |

As in the convex case, the sequence tree gives the shortest paths from the
source point S to all vertices of the polyhedron.

Voronoi diagram

Figure 9: Inward layout and Voronoi diagram for a nonconvex polyhedron.

In the convex case a ridge point is defined as a point R to which there are
more than one shortest paths from the source.[23] This definition is not suitable
in the nonconvex case. Instead we define ridge points as the loci of the Voronoi
diagram constructed on the inward layout of the polyhedron from the images
of the pseudo-sources. Such a Voronoi diagram is constructed by first labeling
the image of each pseudo-source I with the shortest distance from source S to I
(i.e. |SI|), then points P with the property |PI1|+|SIi| = |PIs|+|SI2| = |SP,

17

where I, I> are two different images of pseudo-sources, are labeled as points on
the Voronoi daigram.

The inward layout is a polygon which may overlap with itself (Fig. 9.). A
path between two points on the inward layout is confined within the layout
polygon. The shortest distance of two points on the layout is the minimum
length of the paths between the two points. After unfolding, the pseudo-sources
have a total of O(n) source images on the layout because we cut O(n) shortest
paths to the vertices of the polyhedron.

Theorem 9: The Voronoi diagram on the inward layout of a nonconvex poly-
hedron can be computed in O(nlogn) time and ©(n) space.

Proof: The algorithm for computing the Voronoi diagram on the inward layout
can be obtained by modifying the algorithm for traditional Voronoi diagrams.[22]
Here we only give a sketch of the modified algorithm. A circular order of the
source images on the inward layout can be obtained by traversing the boundary
of the inward layout. We define a linear order by breaking the circular order
somewhere. Suppose that A, the set of image sources, is divided into two subsets
L and R, each containing |A|/2 image sources, such that every image source of
L is to the “left” of those of R. Assume that we already have the Voronoi dia-
grams V(L) and V(R) of L and R, respectively. V(L) and V(R) can be merged
in linear time O(|A|) to form the Voronoi diagram V(A) for the entire set as in
Ref. [22]. Splitting the problem recursively will give an O(nlogn) algorithm.

The merge is done similar to that in Ref. [22]. We only note the differences
here. The poly-hyperline to be constructed in the merging is to start from the
edge of the layout polygon which connects the rightmost source image Iy, in L
and the leftmost source image Ir in R. When I, and I have different initial
distances, the actual poly-hyperline starts from either I, or Ir, and a segment of
the poly-hyperline may be a hyperbola. When the polyline is extended toward
the interior of the layout polygon we may use the same procedure outlined in
Ref. [22]. The poly-hyperline may stop at an edge or a vertex of the layout
polygon or it may be infinite during the construction of the Voronoi diagram. It
never jumps from one level of the layout polygon to a different level by passing
through an edge or a vertex of the inward layout. o

Thus the shortest path problem on nonconvex polyhedrons can be solved in
the same time and space as we do in the convex case.

6 Conclusions

We have given an O(n?) algorithm to compute the subdivision of the surface of
an arbitrary polyhedron such that the length of the shortest path from a given
source point S to any destination point D on the surface may be determined
merely by locating D in the subdivision. We expect that the non-Dijkstra
approach could be applied to other versions of the shortest path problem in
robot motion planning.

18

References

[1] P. Agarwal, B. Aronov, J. O’'Rourke, and C. Schevon, “ Star unfolding
of a polytope with applications”, Proc. of the Scandanavian Workshop on
Algorithm Theory. LNCS 447, 1990.

[2] B. Aronov, J. O’Rourke. “Nonoverlap of the star unfolding”, in Proc. 1991
ACM Symp. on Computational Geometry.

[3] J. Canny, “A new algebraic method for robot motion planning and real
geometry”, Proc. 1987 IEEE FOCS, pp. 39-48.

[4] J. Canny, J. Reif, “New lower bound techniques for robot motion planning
problems”, Proc. 1987, IEEE FOCS, 49-60.

[5] B. Chazelle, “Triangulating a simple polygon in linear time”, Discrete and
Computational Geometry, Vol. 6, 485-524(1991).

[6] J. Chen and Y. Han, “Storing shortest paths for a polyhedron”, Proc. 1991
Int. Conf. on Computing and Information. Lecture Notes in Comput. Sci.,

497, 169-180.

[7] E. W. Dijkstra, “A note on two problems in connection with graphs”, Numer.
Math., 1(1959), pp. 269-271.

[8] D. G. Kirkpatrick, “Optimal search in planar subdivisions”, SIAM J. COM-
PUT. 12(1983), pp.28-35.

[9] D. T. Lee, “Proximity and reachability in the plane”, Ph.D. thesis, Technical
Report ACT-12, Coordinated Science Laboratory, Univ. of Illinois, Chicago,
1L, Nov. 1978.

[10] D. T. Lee and F. P. Preparata, “Euclidean shortest paths in the presence
of rectilinear boundaries”, Network, 14(1984), pp. 393-410.

[11] T. Lozano-Perez and M. A. Wesley, “An algorithm for planning collision-
free paths among polyhedral obstacles”, Comm. ACM, 22(1979), pp. 560-
570.

[12] J. S. B. Mitchell, “Shortest paths in the plane in the presence of obstacles”,
Manuscript, Dept. of Operations Research, Stanford Univ., Stanford, CA,
1984.

[13] J. S. B. Mitchell, “Planning shortest paths”, Ph.D. thesis, Dept. of Oper-
ation Research, Stanford, CA, August, 1986.

[14] J. S. B. Mitchell, D. M. Mount and C. H. Papadimitriou, “The discrete
geodesic problem”, SIAM J. COMPUT. 16 (1987), pp.647-668.

19

[15] D. M. Mount, “On finding shortest paths on convex polyhedra”, Technical
Report 1495, Department of Computer Science, University of Maryland,
Baltimore, MD, 1985.

[16] D. M. Mount, “The number of shortest paths on the surface of a polyhe-
dron”, Tec. Rep., Computer Sci. Dept., Univ. of Maryland, College Park,
1986.

[17] J. O’Rourke, S. Suri and H. Booth, “Shortest path on polyhedral surfaces”,
Manuscript, The Johns Hopkins Univ., Baltimore, MD, 1984.

[18] F. P. Preparata, “New approach to planar point location”, STAM J. COM-
PUT. 10(1981), pp.473-482.

[19] J. Reif, J. A. Storer, “Shortest paths in Euclidean space with polyhedral
obstacles”, Tec. Rep. CS-85-121, Computer Science Dept., Brandeis Univ.,
Waltham, MA, April, 1985.

[20] J. Reif, J. A. Storer, “3-Dimensional shortest paths in the presence of
polyhedral obstacles”, Proc. 1988 Foundations of Computer Sci., pp. 85-92.

[21] C. Schevon, J. O’Rourke, “The number of maximum edges sequences on a
convex polytope”, Proc. Allerton Conference, 1988.

[22] M. Shamos and D. Hoey, “Closest-point problems”, Proc. 17th Annual
IEEE FOCS, (Oct. 1975) pp. 151-162.

[23] M. Sharir and A. Schorr, “On shortest paths in polyhedral spaces”, STAM
J. COMPUT. 15(1986), pp. 193-215.

20

