
More Efficient Parallel Integer Sorting

Yijie Han1 and Xin He2

1 School of Computing and Engineering
University of Missouri at Kansas City

Kansas City, MO 64110, USA
hanyij@umkc.edu,

2 Department of Computer Science and Engineering
University at Buffalo, The State University of New York

201 Bell Hall
Buffalo, NY 14260-2000, USA

xinhe@buffalo.edu

Abstract. We present a more efficient CREW PRAM algorithm for
integer sorting. This algorithm sorts n integers in {0, 1, 2, ..., n1/2} in
O((log n)3/2/ log log n) time and O(n(log n/ log log n)1/2) operations. It
also sorts n integers in {0, 1, 2, ..., n− 1} in O((log n)3/2/ log log n) time
and O(n(log n/ log log n)1/2 log log log n) operations. Previous best algo-
rithm [13] on both cases has time complexity O(log n) but operation
complexity O(n(log n)1/2).

Keywords: Algorithms, design of algorithms, bucket sorting, integer sort-
ing, PRAM algorithms.

1 Introduction

Sorting is a classical problem which has been studied by many researchers
[1][2][3][6][11][12][13][14][16][17][18][19]. For elements in an ordered set compar-
ison sorting can be used to sort the elements. In the case when a set contains
only integers both comparison sorting and integer sorting can be used to sort
the elements. Since elements of a set are usually represented by binary numbers
in a digital computer, integer sorting can, in many cases, replace comparison
sorting. In this paper we study parallel integer sorting and present an algorithm
which outperforms the operation complexity of the best previous result.

The parallel computation model we use is the PRAM model[15] which is used
widely by parallel algorithm designers. Usually three variants of PRAM models
are used in the design of parallel algorithms, namely the EREW (Exclusive
Read Exclusive Write) PRAM, the CREW (Concurrent Read Exclusive Write)
PRAM and the CRCW (Concurrent Read Concurrent Write) PRAM[15]. In a
PRAM model a processor can access any memory cell. On the EREW PRAM
simultaneous access to a memory cell by more than one processor is prohibited.
On the CREW PRAM processors can read a memory cell simultaneously, but
simultaneous write to the same memory cell by several processors is prohibited.

2

On the CRCW PRAM processors can simultaneously read or write to a memory
cell. The CREW PRAM is a more powerful model than the EREW PRAM. The
CRCW PRAM is the most powerful model among the three variants.

Parallel algorithms can be measured either by their time complexity and pro-
cessor complexity or by their time complexity and operation complexity which
is the time processor product. A parallel algorithm with small time complexity
is regarded as fast while a parallel algorithm with small operation complexity is
regarded as efficient. The operation complexity of a parallel algorithm can also
be compared with the time complexity of the best sequential algorithm for the
same problem. Let T1 be the time complexity of the best sequential algorithm
for a problem, Tp be the time complexity of a parallel algorithm using p proces-
sors for the same problem. Then Tp · p ≥ T1. That is, T1 is a lower bound for
the operation complexity of any parallel algorithm for the problem. A parallel
algorithm is said to be optimal if its operation complexity matches the time
complexity of the best sequential algorithm, i.e. Tp · p = O(T1).

On the CREW PRAM the best previous integer sorting algorithm [13] sorts
n integers in O(log n) time and O(n(log n)1/2) operations. In this paper we study
the problem of sorting n integers in {0, 1, ..., n1/2} and in {0, 1, ..., n−1}. The best
previous result for these two cases due to Han and Shen [13] also sorts in O(log n)
time and O(n(logn)1/2) operations. In this paper we present a CREW PRAM
algorithm which sorts n integers in {0, 1, ..., n1/2} in O((log n)3/2/ log log n) time
and O(n(log n/ log log n)1/2) operations. It also sorts n integers in {0, 1, ..., n−1}
in O((log n)3/2 log log n) time and O(n(log n/ log log n)1/2 log log log n) opera-
tions.

When randomization is used usually better or even optimal algorithms can
be achieved. Rajasekaran and Reif first achieved an optimal randomized parallel
sorting algorithm [18]. Reif and Valiant first achieved an optimal randomized
parallel network sorting algorithm [19].

Parallel integer sorting is such a fundamental problem in parallel algorithm
design and many renowned researchers worked on this problem relentlessly. The
milestones on parallel integer sorting on exclusive write PRAMs include 1997
Albers and Hagerup’s paper [2] published on Information and Computation and
2002 Han and Shen’s improvement [13] published on SIAM Journal on Comput-
ing. There are many results of many researchers published before Albers and
Hagerup’s work without much progress passing over the O(n logm) operations
for sorting n integers in {0, 1, ..,m − 1}. After Han and Shen’s work there is
virtually no progress ever since. We worked very hard and only achieved the
not so big improvements presented in this paper. To our experience significant
improvement over Han and Shen’s work [13] on the operation complexity for
parallel integer sorting is very difficult. So to speak that the results we have
achieved and presented here is significant.

3

2 Nonconservative Sorting

First we will show the EREW PRAM algorithm in [13] to sort n1 = 24(logn)1/2

integers in {0, 1, ..., 2(logn)1/2} with word length (the number of bits in a word)
logn. This algorithm is based on the AKS sorting network[1], Leighton’s column
sort[16], Albers and Hagerup’s test bit technique[2] and the Benes permutation
network[4][5].

Because the word length is O(log n) we can store c(log n)1/2 integers in a
word for a small constant c. Using the test bit technique[2][3] we can do pair-
wise comparison of the c(log n)1/2 integers in a word with the c(log n)1/2 integers
in another word in constant time using one processor. Moreover, using the result
of the comparison the c(log n)1/2 larger integers in all pairs in the two words
under comparison can be extracted into one word and the c(log n)1/2 smaller
integers in all pairs in these two words can be extracted into another word and
this can also be done in constant time using one processor[2][3]. Without loss
of generality we may also assume that c(log n)1/2 is a power of 2. We first pack
n1 input integers into n2 = n1/(c(log n)1/2) words with each word containing
c(log n)1/2 integers. We then imagine an AKS sorting network [1] being built
on these n2 words. On the AKS sorting network we compare two words at each
internal node of the network. Thus each node of the AKS sorting network can
be used to compare the c(log n)1/2 integers in one word with the c(log n)1/2

integers in another word in parallel. At the output of the AKS sorting network
we have sorted c(logn)1/2 sets with the i-th set containing i-th integers in all
n2 words. In terms of Leighton’s column sort[16] we can view that we place n1

integers in c(log n)1/2 columns with each column containing n2 integers. The
i-th column, 0 ≤ i < c(log n)1/2, contains the i-th integer of every word. At
the output of the AKS sorting network, every column is sorted. The principle
of Leighton’s column sort says that to sort n1 integers we need only to sort
all c(logn)1/2 columns independently and concurrently for a constant number
of times (passes) and perform a fixed permutation among the n1 integers after
each pass. Besides, these fixed permutations are simple permutations such as
shuffle, unshuffle and shift. Applying the column sort principle, we perform a
fixed permutation among the n1 integers when they are output from the AKS
sorting network after each pass. The permutation can be done by disassembling
the integers from the words, applying the permutation and then reassembling the
integers into words. Thus each pass consisting of sorting on columns and then
permutation can be done in O((log n)1/2) time and O(n1) operations. According
to Leighton’s column sort we need only a constant number of passes in order to
have all the n1 integers sorted. Thus the sorting of n1 integers can be done in
O((log n)1/2) time and O(n1) operations.

For our purpose (see later section that we have integers not in an array but
in a linked list) we also need the following scheme to accomplish the permuta-
tion mentioned above. The permutation should be done by routing the integers
through a network N which is the butterfly network in conjunction with a re-
verse butterfly network(see Fig. 1.). Network N can be used to emulate the Benes

4

permutation network[4][5] to perform permutations. Each stage of the butterfly
network emulates the processor connection along a dimension on the hypercube
and switches integers between words or within words (within words means each
integer is switched with another integer in the same word. This is where we need
c(log n)1/2 to be a power of 2). Because c(logn)1/2 is a power of 2 each stage
of the butterfly network can be done in constant time even when integers are
switched within words. Because butterfly network has O((log n)1/2) stages, the
permutation can be done in O((log n)1/2) time. Because there are only n2 words
the operation complexity is time×processors= O((log n)1/2)×n2 = O(n1). Note
that since the permutations we performed here are fixed permutations according
to Leighton’s column sort, the setting of the switches in the butterfly network
can be precomputed (according to the way Benes permutation network is used
to perform permutations).

The following Lemmas 1 and 2 are the cornerstone of the paper [13] on SIAM
Journal on Computing.

Sorting integers into linked lists means, after sorting, integers of the same
value are in the same linked list and integers of different values are in differ-
ent linked lists. It does not imply integers of the same value are packed into
consecutive locations.
Lemma 1 [13]: n integers in the range {0, 1, ..., 2(log n)1/2} can be sorted into
linked lists on the EREW PRAM with word length O(log n) in O((log n)1/2)
time using O(n) operations and O(n) space.

Lemma 2 [13]: n′ integers in {0, 1, ..., 2t(log n)1/2} can be sorted into linked lists
on the EREW PRAM with word length logn in O(t(logn)1/2) time and O(tn′)
operations.

Here in Lemma 2 n′ is not related to n. Lemma 2 is essentially the t iterations
of execution of Lemma 1.

Note that the result of Cook et al. [7] says that if we sort these integers in
an array it will need Ω(log n) time. The property of sorting into linked lists and
the small range of values for integers enabled Lemmas 1 and 2 to be proved in
[13].

3 Sorting n Integers in {0, 1, ..., 2c(logn log logn)1=2}

We consider the problem of sorting n integers in the range {0, 1, ..., 2c(log n log log n)1/2}
on the CREW PRAM with word length O(log n), where c is a small constant.
For our purpose we assume that (log n/ log log n)1/2 is a power of 2

In the first stage we pack every (log n/ log log n)1/2 integer into a word (called
original word later). This results in a set S1 of n3 = n/(log n/ log log n)1/2 words.
We now show how to sort these n3 words in S1.

The first step of this stage is to sort the integers (each having c(logn log log n)1/2

bits) within each word. This is done by a table lookup because we can precom-
pute such a table of size nc. This takes constant time (here we used concurrent
read).

5

Then we take the most significant (log log n)/4 bits from each integer in each
word and pack them together to obtain a word containing (log n/ log log n)1/2(log log n)/4
bits. We first use a mask to extract these bits as shown in the first step in Fig.
2 (Applying mask). We cannot pack these extracted bits in a word together in-
dependently for each word because of complexity considerations. Therefore we
shift the bits in a word and then do bitwise OR with another word to combined
two words into one word, and we repeatedly do this (repeat log log log n times)
to combine log log n words into one word. This is step 2 in Fig. 2 (Shift and
bitwise OR) and takes O(log log log n) time and O(n3) operations. Now all the
extracted bits are stores in n3/ log log n words. Within each words there are null
bits between two blocks of extracted bits and therefore we pack extracted bits
to let them occupy consecutive bits in a word. We do this independently for
each word and because there are n3/ log log n words we can afford this. This
is the step 3 in Fig. 2 (Compack). This step takes O(log log n) time (Because
there are (log n/ log log n)1/2 blocks of extracted bits in one word. Using constant
operations we can reduce the number of blocks in a word w by half by taking
half of the blocks in w out and put them in another word w1 then shift bits in
w1 and then do wORw1.) and O(n3/ log log n × log log n) = O(n3) operations.
Now although extracted bits are packed, the order they appear in a word is ex-
tracted bits from original word1; extracted bits from original word2; ...; extracted
bits from original word(log log n); extracted bits from original word1; extracted
bits from original word2; ...; extracted bits from original word(log log n);.... Ex-
tracted bits come from different original words because of step 2 in Fig. 2. Our
objective is to pack extracted bits in each original word and store them in one
word. Therefore we now do step 4 in Fig 2. (Applying mask) and in log log log n
steps and O(n3) operations we separate (disassemble) one word into log log n
words and extracted bits from each original word is now in an independent
word. Because of step 3 in Fig. 2 the extracted bits are somewhat compacked
in a word and therefore we can again combine words together. This times we
can let extracted bits from one original word being consecutive but not com-
packed. This is step 5 in Fig. 2 (Shift and then bitwise OR). This step takes
O(log log log n) time and O(n3) operations. Now again we have put all extracted
bits in n3/ log log n words. And now we do step 6 in Fig. 2 (compack) indepen-
dently for each word. The complexity of this step is similar to that of step 3 (but
now we have (log n/ log log n)1/2 log log n blocks) and takes O(log log n) time and
O(n3) operations. Now we have extracted bits from each original word packed
in consecutive bits of a word. Now we do step 7 in Fig. 2, i.e. separate extracted
bits from each original word into an independent word. This step is similar to
step 4 and takes O(log log n) time and O(n3) operations.

Thus it takesO(log log n) time andO(n3) operations for all the steps in Fig. 2.
We call the set of these words obtained at the end of Fig. 2 S2. Note that because
many extracted bits in an original word have the same value (there are more
integers in a word ((log n/ log log n)1/2 of them) than the number of different
values of extracted bits (2(log log n)/4 of them) and integers within an original
word has been sorted, therefore a word in S2 of (log n/ log log n)1/2(log log n)/4

6

bit can have only
∑2(log logn)/4−1
i=1

(
(logn/ log logn)1/2

i

)
< (logn)1/2 values (different

sorted situation corresponds to different ways of setting the position of first
integer (extracted bits) among the integers (extracted bits’) of the same value
(except the first integer which assumes position 0)). Thus a word in S2 can be
uniquely represented by an integer i within 0 and 2(logn)1/2−1. Therefore i can be
represented using no more than (log n)1/2 bits. Again we can use table lookup
to convert a (log n/ log log n)1/2(log log n)/4 bit integer in S2 to an integer of
(log n)1/2 bits. We let set S3 to be the set of (log n)1/2-bit integers converted
from integers in S2. Each word in S3 corresponds to a word in S1.

We now partition the n3 words of S3 into n3/24(log n)1/2
groups with each

group containing 24(log n)1/2
words. We then sort every group concurrently using

the algorithm in Section 2. We spend O((log n)1/2) time and O(n3) operations.
We may assume that every integer value in {0, 1, ..., 2(logn)1/2 − 1} (for a

word) exists in each group. If such an integer value does not exist within a group
we add a dummy word to the group to represent this integer value. We thus
added no more than 2(log n)1/2

dummy words to each group which account for
a very small fraction of the total number of words in the group. Now because
words in each group has been sorted we can make 2(log n)1/2

linked lists for each
group with each linked list linking all integers with the same integer value in the
group together. Then we join a linked list for integer value i in a group g with
lined lists for integer value i of g’s left and right neighboring groups. With the
help of dummies we thus obtained 2(logn)1/2

linked lists for all groups.
Now we can link words in S1 the same way as we link words in S3 because each

word in S1 corresponds to a word in S3. The time complexity is O((log n)1/2)
and the operation complexity is O(n3).

This accomplishes the first stage.
In each subsequent stage we take the next (log log n)/4 bits from each integer

in a word in S1 to form a word in set S2 (now there is a set S2 for each linked
list). Then from S2 we obtain S3 (again one for each linked list) and then we
sort each group of S3 of each linked list.

Now we discuss how each linked list is split in each stage. Elements in each
linked list are sorted (using the sorting algorithm in Section 2 and here we need
to do permutation in the sorting algorithm using the butterfly network, see also
[13]) in each stage and this linked list is going to be split into multiple linked
lists such that elements of the same value will be in the same linked list and
elements of different value are sorted into different linked lists.

A linked list is short if it contains less than 24(logn)1/2
elements (words), is

long if it contains at least 24(log n)1/2
elements. We first group every consecutive

S elements in a linked list into one group. For a short linked list S is the number
of total elements in the linked list. For a long linked list S varies from group to
group but is at least 24(logn)1/2

and no more than 25(logn)1/2
.

If the linked list is short there is only one group in the linked list. The sorting
will then enable us to split the linked list into t ≤ 2(logn)1/2

linked lists such that
each linked list split contains all words whose integer values are the same, where

7

t is the number of different integer values. Here we note that for short linked list
t could be less than 2(logn)1/2

(for example if all integer values are the same t
will be equal to 1).

If the linked list is long we will always split the linked list into exactly
2(logn)1/2

linked lists no matter how many different integer values are there.
After sorting in each group, words in each group are split into 2(log n)1/2

linked
lists. If an integer value among the 2(log n)1/2

values does not exist we create a
linked list containing only one dummy element representing this integer value.
Again as we stated above, no more than 2(logn)1/2

dummy elements will be cre-
ated for each group. For consecutive (neighboring) groups on a long linked list
we then join the split linked lists in the groups such that linked lists with the
same integer values are joined together. With the help of those dummy elements
we now have split a long linked list into exactly 2(logn)1/2

linked lists.
With the existence of dummy elements in the linked list, the splitting process

should be modified a little bit. For a short linked list, after the grouping all
dummy elements will be eliminated. For a long linked list, the dummy elements
will also be eliminated after grouping, but new dummy elements could be created.

Since each group on a long linked list has at least 24(logn)1/2
elements and

since each such a group creates at most 2(log n)1/2
dummy elements, the total

number of dummy elements created in a stage is at most n3/23(logn)1/2
. Dummy

elements generated in a stage are eliminated in the next stage and new dummy el-
ements are generated for the next stage. For a total of O((log n)1/2) stages the to-
tal number of dummy elements generated is no more thanO(n3(logn)1/2/23(log n)1/2

).
Because integers are now on linked lists, linked list contraction is needed to

form groups. This paragraph describes linked list contraction and is somewhat
involved. Readers who are not very familiar with symmetry breaking and linked
list contraction can skip this paragraph. We apply symmetry breaking schemes
by Han[9][10] and Beame[8] to break a linked list into sublists of length no
more than log(c) n in O(log c) time for a constant c. Pointer jumping[20] is then
executed for each sublist. When pointer jumping finishes the sublist is contracted
into one node. Since the length of these sublists are different some sublists finish
pointer jumping faster and some sublists finish pointer jumping slower. If a
sublist is contracted into a single node v, the processor associated with v checks to
see if the neighboring sublists also have been contracted into single nodes. If one
of its neighboring sublist is contracted into a single node then nodes representing
the sublists form a new list and symmetry breaking and pointer jumping can be
applied to this new list. And therefore the contraction process continues. If v finds
out that both of its neighboring sublist have not finished pointer jumping then
v becomes inactive. In this case v will be picked up (activated and contracted
together with) by the contracted node representing the neighboring sublist which
first finishes pointer jumping. We define one step for a node as first picking up
its inactive neighbors and then if it is still active performing symmetry breaking
and a pointer jump. This whole contraction process can be viewed as contracting
a linked list of length l to a linked list of length 2l/3 in a step because if a node

8

is inactive then both of its neighbors are active in the contraction process. Thus
to contract S elements into a node takes only O(logS) time. For a long linked
list each group can be kept between 26(log n)1/2

and 27(logn)1/2
. Thus for each

stage the contraction can thus be done in O((log n)1/2) time with O(S log(c+1) n)
operations for each group (O(n3 log(c+1) n) operations for all linked lists). This
factor of log(c+1) n is introduced because of pointer jumping. We can remove this
log(c+1) n factor because we can pack c(logn)1/2 words in S3 into one word and
therefore the pointer jumping needs not to be done by every word in S3. Thus
the linked list contraction takes O((log n)1/2) time and O(n3) operations.

More complications of this process such as where to store dummy elements,
how to move words to sorted position, etc., are explained in [13].

Let us estimate the complexity. Because each stage removes c(log n log log n)1/2

bits. there areO((log n/ log log n)1/2) stages. Because each stage takesO((log n)1/2)
time the time for our algorithm in this section is O(log n/(log log n)1/2). Each
stage takesO(n3) operations and therefore for all stages it hasO(n3 log n/(log log n)1/2) =
O(n) operations.

Now for each linked list L, the words of S3 on L are all having the same value
(i.e. the j-th integer in all these words are the same. However, the i-th integer
and the j-th integer may be different.). We can group every (log n/ log log n)1/2

words on L together and do a transposition (put the j-th integer in all these
words in one word). This takes O(log log n) time and O(n3 log log n) operations
(this should be simple and readers can work it out or see [13]). After that we
sort the transposed words into linked lists in O((log n log log n)1/2) time and
O(n3(log log n)1/2) operations using Lemma 2 (note that now each word contains
(log n/ log log n)1/2 integers of the same value which is in {0, 1, ..., 2c(log n log log n)1/2−
1}).

Thus we have:
Theorem 1: n integers in {0, 1, ..., 2c(logn log log n)1/2} can be sorted into linked
lists on the CREW PRAM with word length log n in O(log n/(log log n)1/2) time
and O(n) operations.

4 Sorting Integers in {0, 1, ..., n1=2} and in {0, 1, ..., n− 1}
To sort n integers in {0, 1, ..., n1/2}We apply Theorem 1 (1/(2c))(log n/ log log n)1/2)
times and reach
Theorem 2: n integers in {0, 1, ..., n1/2} can be sorted on the CREW PRAM
with word length log n inO((log n)3/2/ log log n) time andO(n(log n/ log log n)1/2)
operations.

The situation for sorting n integers in {0, 1, ..., n−1} is different. For sorting
the most significant log n/2 bits we can apply Theorem 2. After that n integers
are partitioned into n1/2 sets and we have to sort every set concurrently and
independently. Here on the average each set has n1/2 integers. When we are
sorting n1/2 integers we cannot pack every (log n/ log log n)1/2 integers to form
words of log n bits in paragraph 2 of Section 3 (if the algorithm in Section 3 is
well understood then one can see that n integers corresponds to log n bits for

9

sorting). To sort n1/2 integers we can use only log n/2 bits and therefore we can
pack only (1/2)(log n/ log log n)1/2 integers in {0, 1, ..., 2c(log n log log n)1/2} into
one word. However, because the number of bits is reduced by half the number of
stages in the algorithm of Theorem 1 is also reduced by half. Thus sorting the
next log n/4 bits has half the time complexity but the same operation complexity
as sorting the most significant log n/2 bits. Again sorting the next logn/8 bits
takes the 1/4 time complexity and the same operation complexity as sorting the
most significant log n/2 bits.

Thus if we iterate t times we spendO((log n)3/2/ log log n) time andO(tn(log n/ log log n)1/2)
operations and we have log n/2t bits left to be sorted. By Lemma 2 the remain-
ing log n/2t bits can be sorted in O((log n)1/2/2t) time and O(n(log n)1/2/2t)
operations. Now to pick the optimal t let

tn(logn/ log log n)1/2 = n(log n)1/2/2t

and we obtain that t = (log log log n)/2. Thus we have that
Theorem 3: n integers in {0, 1, ..., n− 1} can be sorted on the CREW PRAM
with word length log n inO((log n)3/2/ log log n) time andO(n(log n/ log log n)1/2 log log log n)
operations.

5 Conclusions

We presented a CREW integer sorting algorithm which outperforms the opera-
tion complexity of previous best result. Many problems remains open such as:
can we remove concurrent read from our algorithm? can time complexity be low-
ered to O(log n)? can we sort integers with value larger than n? etc.. Note that
Han proved before [11] that n integers in {0, 1, ...,m − 1} can be sorted on the
EREW PRAM in O((log n)2) time and O(n(log log n)2 log log log n) operations
provided that logm ≥ (logn)2. This provides a partial solution to one of the
open problems mentioned here. Our hunch is that removing the restriction of
integers being bounded by n probably should be the next target to achieve. We
hope our future research will resolve some of the open problems mentioned here.

References

1. M. Ajtia, J. Komlós, E. Szemerédi, Sorting in c logn parallel steps, Combinator-
ica, 3, pp. 1-19(1983).

2. S. Albers and T. Hagerup, Improved parallel integer sorting without concurrent
writing, Information and Computation, 136, 25-51(1997).

3. A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting in linear time? Proc.
1995 Symposium on Theory of Computing, 427-436(1995).

4. V.E. Benes, On rearrangeable three-stage connecting networks, Bell Syst. Tech.
J., Vol. 41, 1481-1492(1962).

5. V.E. Benes, Mathematical Theory of Connecting Networks and Telephone Traf-
fic, New York: Academic, 1965.

10

6. S. Chen and John H. Reif. Using difficulty of prediction to decrease computation:
fast sort, priority queue and convex hull on entropy bounded inputs. 34th Annual
IEEE Conference on Foundations of Computer Science (FOCS ’93) Proceedings,
November 1993, Palo Alto, CA, pp. 104-112.

7. S. Cook, C. Dwork, and R. Reischuk. Upper and Lower Time Bounds for Par-
allel Random Access Machines without Simultaneous Writes. SIAM J. Comput.
Volume 15, Issue 1, pp. 87-97 (1986).

8. A.V. Goldberg, S.A. Plotkin, G.E. Shannon, Parallel symmetry-breaking in
sparse graphs, SIAM J. on Discrete Math., Vol 1, No. 4, 447-471(Nov., 1988).

9. Y. Han. Matching partition a linked list and its optimization. Proc. 1989 ACM
Symposium on Parallel Algorithms and Architectures (SPAA’89), Santa Fe, New
Mexico, 246-253(June 1989).

10. Y. Han, An optimal linked list prefix algorithm on a local memory computer,
Proc. 1989 Computer Science Conference (CSC’89), 278-286(Feb., 1989).

11. Y. Han. Improved fast integer sorting in linear space. Information and Compu-
tation, Vol. 170, No. 1, 81-94(Oct. 2001).

12. Y. Han. Deterministic sorting in O(n log log n) time and linear space. Journal of
Algorithms, 50, 96-105(2004).

13. Y. Han, X. Shen. Parallel integer sorting is more efficient than parallel compari-
son sorting on exclusive write PRAMs. SIAM J. Comput. 31, 6, 1852-1878(2002).

14. W.L. Hightower, J. Prins, and John H. Reif. Implementations of randomized
sorting on large parallel machines. 4th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA’92), San Diego, CA, pp. 158-167, July 1992.

15. J. JáJá, An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
16. T. Leighton, Tight bounds on the complexity of parallel sorting, IEEE Trans.

Comput. C-34, 344-354(1985).
17. John H. Reif. An n1+ε processor, O(logn) time probabilistic sorting algorithm.

SIAM 2nd Conference on the Applications of Discrete Mathematics, Cambridge,
MA, June 1983, pp. 27-29.

18. S. Rajasekaran and John H. Reif. An optimal parallel algorithm for integer sort-
ing. 26th Annual IEEE Symposium on Foundations of Computer Science, Port-
land, OR, October 1985, pp. 496-503. Published as “Optimal and sublogarithmic
time randomized parallel sorting algorithms.” SIAM Journal on Computing, Vol.
18, No. 3, June 1989, pp. 594-607.

19. L.G. Valiant and John H. Reif, A Logarithmic Time Sort for Linear Size Net-
works. 15th Annual ACM Symposium on Theory of Computing, Boston, MA,
April 1983, pp. 10-16. Published in Journal of the ACM(JACM), Vol. 34, No. 1,
January 1987, pp. 60-76.

20. J. C. Wyllie, The complexity of parallel computation, TR 79-387, Department
of Computer Science, Cornell University, Ithaca, NY, 1979.

11

0

1

2

3

4

5

6

7

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Fig. 1. A permutation network.

12

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������

���������
���������
���������
���������
���������
���������

���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������

���������
���������
���������
���������
���������
���������

���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������

���������
���������
���������
���������
���������
���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

Applying mask

���������������������

Shift then bitwise OR

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

���������
���������
���������

���������
���������

���������
���������

���������
���������

�����
�����
�����

�����
�����
�����

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

{logloglogn steps

�������

Compack
(cloglogn steps)

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

���������
���������

Applying mask
(logloglogn steps)

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

Shift then bitwise OR

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

} 1

} 2

{logloglogn steps

} 1

} 2

Compack
(cloglogn steps)

�����������
�����������

���������
���������

�����������
�����������

�����������
�����������

�����������
�����������
�����������

���������
���������

�����������
�����������

�����������
�����������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

���������
���������

���������
����������������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�����
�����
�����

�����
�����
�����

}1

}2

���������
���������

���������
���������
���������
���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���������
���������

���������
���������
���������
���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������
���������

Applying mask
(logloglogn steps)

Fig. 2. Packing.

