
Problem E: File Mapping
Input file: file.in

Program file: file.{c, cpp, java}

A computer’s hard drive must store large amounts of information. This information is arranged into
tracks, each track being a circular path around the disk, based on the position of the read/write head as
the disk surface rotates under it. Likewise, each track is arranged into sectors, with each sector holding
a fixed amount of data. Each sector holding data from a file will be used in its entirety, except possibly
the last sector, which may be only partially filled. Under no circumstances can data from two different
files reside in the same sector at the same time.

When a file is saved, the disk drive must find a place on the disk to hold the file. If there is no single
unused block (group of sectors) that is large enough or conveniently located, the file is broken into
fragments to take advantage of the space available, wherever it may be. Thus a file may occupy sectors
on several different tracks. If the file is deleted, then all of the sectors taken up by that file become
available for other use.

Your job is to write a program recording disk usage and reporting the state of the hard drive after a
series of file saves and deletes.

Your input is formatted as follows: Each set of input data begins with two integers T and S, the number
of tracks on your disk and the number of sectors per track. Each track has the same number of sectors.
T and S will both be >= 0 and <= 1,000. For this problem, each sector holds exactly 1000 bytes. This
will be followed by some number of commands. There are 3 types of command:

S Name N
D Name
X

The first is the command to save a file. It consists of the uppercase letter ‘S’, then the name of the file,
then the size. The file name will be at least 3 and no more than 20 characters, is strictly alphanumeric,
is case-sensitive, and will have no embedded whitespace. Each Name is unique within that data set. N is
the size of the file in bytes, and will always be at least 1 and no more than 1 billion. If your program is
allocating disk space correctly, there will always be room to save any file at the time the save command
is encountered.

The second type of command is to delete a file. It begins with an uppercase ‘D’ followed by the name
of the file to be deleted. Any such command will only be given to delete a file that has already been
saved in the same data set. When a file is deleted, all sectors containing that file’s data should be made
available for future saves. Saves and deletes may occur in any order, subject only to the rule that a file
must be saved before it can be deleted.

The final command, an uppercase ‘X’, marks the end of the file commands for that data set. The end of
all input data is marked by values of 0 for T and S.

File data should be allocated according to the following rules:
• All data of every file must be allocated, using the minimum number of sectors possible.
• At the beginning of each data set, data allocation begins at the first sector of the first track, and

proceeds through the sectors of that track (in order) before moving on to the next track if
necessary. Then the sectors of that track are used in order, then the next, etc.

• Allocation of subsequent files begins at the first available sector following the last sector that
was written on the most recent save operation. This may be in the same track or a following
track, depending on where space is available.

• If there is no room in the remaining tracks, return to the first sector of the first track and
continue searching.

Output: Your output is a mapping of the state of the drive after all commands are processed. Each track
is one line of output, starting with the first track. Each sector that is in use is represented by a digit ‘1’,
and each unused sector is represented by a digit ‘0’. There should be no whitespace between characters
of output. The end of each disk map is marked by a ‘*’ on a line by itself.

Sample Input Sample Output
2 2
S zarf 1387
S fred 4
X
2 2
S zarf 1387
D zarf
S Fred 4
X
2 2 S zarf 1387
D zarf
S fred 4
S z0rd 1274
X
5 7
X
4 3
S 1file1 5487
S 1file2 273
D 1file1 D 1file2 X
0 0

11
10
*
00
10
*
10
11
*
0000000
0000000
0000000
0000000
0000000
*
000
000
000
000
*

