
Problem B: Binar Coding
Input: binar.in

Program: binar.{c, cpp, java}

Government scientists working in a top-secret listening station have been monitoring broadcasts
of an alien race they call the Binars. The Binars are extremely efficient; they even change the
alphabet they use based on the needs of a specific message. (A Binar-To-English translation
project is underway, but just working out the Binar alphabet has been a huge challenge in itself.)

The key breakthrough came when scientists realized that the Binar alphabet uses a variable
number of characters N, where N never exceeds 25. (Thus we can use our letters 'A' to 'Y' as a
stand-in for the actual Binar characters, for which there is no direct ASCII equivalent.) Each
message begins with the value of N, followed by a parameter P which is always strictly between
0 and 1.

Just as with terrestrial languages, different characters in Binar appear with differing frequencies.
However, character frequencies in Binar follow a strict set of rules. The first character in the
alphabet appears with relative frequency 2/N. The second and each subsequent character appears
with frequency (P * relative frequency of previous character). These may not sum to 1.0, but do
describe the expected distribution of the given alphabet.

Example: N = 5, P = 0.6
Character Relative frequency of this character Code (see below for derivation)
A
B
C
D
E

2/5 = 0.4
0.4 * 0.6 = 0.24
0.24 * 0.6 = 0.144
0.144 * 0.6 = 0.0864
0.0864 * 0.6 = 0.05184

0
10
110
1111
1110

Another example: N = 4, P = 0.9
Character Relative frequency of this character Code (see below)
A
B
C
D

2/4 = 0.5
0.5 * 0.9 = 0.45
0.45 * 0.9 = 0.405
0.405 * 0.9 = 0.3645

11
10
01
00

The Binars then transmit messages in such an alphabet by encoding alphabetic characters into bit
strings that minimize the total length of the message in bits. They do this by using a variable-
length code, in which more-common symbols are represented using fewer bits than less-common
symbols. No bit string is the prefix of any other bit string. If the bit strings are sorted in
lexicographic order (as a string of 1's and 0's), shorter bit strings precede longer bit strings. All
bit strings of the same length are assigned consecutively to characters in reverse lexicographic
order; that is, if we have several characters that have bit-string representations with the same
number of bits, we assign the earliest letter to the lexicographically-latest bit string, then the
next-earliest character to the next-latest bit-string, and so on. (Both of the above examples follow
this rule.)

The code is built by constructing a tree from a set of smaller trees. Initially, each character is its
own tree. The two trees with lowest relative frequency are then removed, made the children of a
new root node, and the new tree added back in. The root of the new tree has a relative frequency
equal to the sum of its subtrees. This continues until there is only a single tree remaining, which
contains all the characters as leaves. The length of any character's code is the length of the path
from the root of the tree to the leaf containing that character.

Your task is to decode messages from the Binars.

You are given several sets of input. Each begins with an integer N (0 ≤ N ≤ 25) specifying the
number of characters in the alphabet, followed by a floating-point value P (0 < P < 1) describing
the rate at which relative frequencies decrease. You are then given a string of 0's and 1's
representing a Binar-encoded message. This message is no more than 1000 characters long, and
contains no embedded whitespace. Your output for each is the decoded version of that message,
using upper case characters, as shown in the examples below. Each output is on a line by itself.
The end of the input data is marked by a value of 0 for N. Data is separated by whitespace; do
not assume any particular line-oriented format for the input data.

Sample Input Output
5 0.6 1100001011101001101111010
4 0.9 111001000001101111
5 0.6 1110111011101110111011101110
7 0.75
11010110010110011011011111010111111001110110
0

CAAABEBACDAB
ABCDDCBAA
EEEEEEE
CDEDECCFDAFEGC

