
Problem G: Block Off the Old Chip
Input: block.in

Program: block.{c, cpp, java}

The Acme Microchip Company designs and fabricates custom chips for a variety of clients. Each
chip contains several electronic components, which must be connected by running electrical
channels along the surface of the chip. Since these channels are defined by paths printed onto the
chip, they cannot intersect each other or overlap. As the chips get larger, finding a set of paths
that connect all the components, without intersecting each other or overlapping at any point,
becomes more of a challenge.

The company is interested in applying a probabilistic optimization method called a genetic
algorithm to this problem. In this method, several hundred designs are put together more or less
at random, with the only requirement being that they are not physically impermissible (such as
having crossed connections). Of those designs, the best-performing 50% are selected to
‘reproduce’; the rest are discarded. The next generation is constructed by randomly selecting
pairs of survivors, randomly selecting features from each to copy onto the ‘offspring;’ in
addition, a few small random modifications called mutations are also made. Sometimes these
random selections result in a chip with impermissible features; in this case the new chip is
abandoned, and another random pair selected. The best 50% of the next generation are selected
to reproduce; and the process continues until a ‘good enough’ chip is obtained. Eventually, a
good design (not necessarily optimum) will be settled on, though it can be hard to predict in
advance how long such a solution may take to find. (In reality, genetic algorithms have proven
useful in a large number of multidimensional optimization problems, not just chip fabrication.)

Obviously, impermissible chip designs must be identified and eliminated. As part of this process,
Acme needs a program to answer the following question: Given a chip represented as a 2-
dimensional space, with dimensions going from (0, 0) to (X, Y), and multiple connections on that
chip, modeled as straight line segments connecting points (a, b) and (c, d), are there any
intersections between line segments?

The following conditions will hold:
• X ,Y, a, b, c, and d will all be integers >= 0.
• If we define a rectangle with (0, 0) at one corner and (X, Y) at the diagonally-opposite

corner, points (a, b) and (c, d) will both be within that rectangle (i.e. on the chip), though
one or both may be on an edge.

• Endpoints of a segment will always be distinct; there are no 0-length line segments.
• Line segments are distinct; any pair of segments will differ in at least one endpoint

(though segments may be collinear; for example, the segment ((1,0), (10, 0)) and the
segment ((5,0),(12,0), or the segments (1, 2), (2,2) and (2,2), (3,2)).

• No line segments are exactly vertical (X coordinates the same; in our notation, a == c).
• It is never the case that 3 or more line segments intersect at exactly the same point; any

intersections will be between 2 line segments only.
• If intersections are present, they may be at interior points or at endpoints of segments.

Each input set begins with an integer triplet of the form X Y N, where X is the maximum X value
for this chip, Y is the maximum Y value, and N is the number of line segments on the chip. X and
Y will be less than or equal to 500. N will be no more than 1000. The input then continues with N
line segments; each segment is specified by giving its endpoints. Each endpoint is an ordered
pair of integers. Each is an X value followed by a Y value. All input is separated by whitespace.
All pairs will be valid coordinates within a chip of dimensions (X, Y). The end of input is marked
by an input triplet with values of 0 for X, Y, and N.

For each set of input, produce a single line of output: The word ACCEPT if there are no
intersections between line segments, and REJECT if there are any.

Sample Input Sample Output
5 5 2
1 3 3 1
1 1 2 3
5 5 2
5 3 4 2
3 1 4 1
6 6 3
0 1 5 1
0 2 5 2
1 3 3 4
10 10 2
5 1 4 2
6 4 5 1
0 0 0

REJECT
ACCEPT
ACCEPT
REJECT

