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Fig. 6 Real 256 X 256 photographically out-offocus blurred image, estl- 
muted 2D PSF, and reJtored image 
a Real image 
b Estimated 2D PSF 
c Restored image 
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Conclusions; We propose a fully digital auto-focusing system 
based on novel out-of-focus blur estimation and restoration algo- 
rithms. The main advantages of the proposed PSF estimation 
algorithm are that it can estimate both radius and sample values 
of an arbitrary circularly symmetric blur, and that it does not 
require the DFT or a numerical optimisation process for parame- 
ter estimation. As a result it is far more efficient than the existing 
methods in terms of computational complexity. The proposed sys- 
tem can accurately estimate not only simulated out-of-focus blur, 
but also real photographical blur. 
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Batch verifying multiple RSA digital 
signatures 

L. Harn 

A digital signature is analogous to an ordinary hand-written 
signature used in signing messages. RSA digital signatures have 
been adopted by Visa and Mastercard in the secure electronic 
transactions (SET) standard for providing security of electronic 
transfers of credit and payment information over the internet. In 
SET, signatures are used to provide certificates for public keys 
and to authenticate messages. The authors propose an efficient 
method of Verifying RSA digital signatures. Instead of verifying 
one signature at a time, it is proposed to batch verify RSA 
signatures simultaneously. This approach maintains the same 
computational load as verifying a single signature. Thus, a 
significant reduction in signature verification time can be 
achieved. 

Introduction: A digital signature is analogous to an ordinary hand- 
written signature used for signing messages. It must be unique and 
private to the signer. More specifically, suppose that B is the recip- 
ient of a message m signed by A. Then, A’s signature must satisfy 
three requirements [l]: 
(i) B must be able to  validate A’s signature on m easily 
(ii) It must be impossible for anyone, including B, to forge A’s 

signature 
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(iii) It must be possible for a judge or third party to resolve any 

At this time, there are two popular public-key algorithms which 
can provide digital signatures: the RSA scheme [2], in which the 
difficulty of breaking the scheme is based on solving the factoring 
of a large integer into two large prime factors; and the ElGamal 
scheme [3], in which the difficulty of breaking the scheme is based 
on solving the discrete logarithm problem. 

The RSA digital signature has been adopted by Visa and Mas- 
tercard in the secure electronic transactions (SET) standard [4] for 
providing security of electronic transfers of credit and payment 
information over the internet. In SET, signatures are used to pro- 
vide certificates for public keys and to authenticate messages. 
Since public key cryptography requires intensive computation, it is 
desirable to speed up these public key computations by using 
either special-purpose hardware or efficient software algorithms. 
In this Letter, we propose an efficient algorithm to batch verify 
RSA signatures signed by the same private key. Instead of verify- 
ing one signature at a time, we propose to verify multiple signa- 
tures simultaneously. This approach maintains the same 
computational load as is required to verify a single signature. 
Thus, a significant reduction in signature verification time can be 
achieved. The application of our scheme can be used in electronic 
commerce to significantly reduce the computational load. For 
example, multiple public-key certificates signed by the same certif- 
icate authority (CA), or multiple authenticate messages signed by 
the same payment gateway, can be verified based on our scheme. 

dispute between A and B. 

Algorithm: The scheme is based on the property that RSA signa- 
tures satisfy the multiplicative property. The following example 
illustrates this property. 

Assume that the RSA signature scheme has selected the modu- 
lus n = pq, where p and q are two large secret primes. Let us 
denote e as the public key and d as the private key, where ed 
mod@ - l ) (q  - 1) = 1, and h(.) is a one-way hash function. The 
RSA signature of a message m, is S, = h(mJd mod n. The signature 
verification is performed by checking whether h(m,) = S: mod n. 
We assume that the RSA signatures ofm,, m,, ..., m, are S,, S,, ..., 
S,. Due to the multiplicative homomorphism, we can easily prove 
the following theorem. 

Theorem 1: If the signatures S,, S,, ..., S,, of in,, 3, ..., m,, are all 
valid, then we have (E,=,=,’ S,p = TC-; h(m,) mod n. 

We call the product of individual signatures E,=; S, mod n the 
‘multiplicative signature’ of mi, m,, ..., m,. To verify this multipli- 
cative signature, we need only to compute one exponentiation. 
The objective of this Letter is to prove that the multiplicative sig- 
nature is a valid signature of messages m,, m2, ..., m,. 

Theorem 2: If the multiplicative signature satisfies (E,=; Sty = E,=/ 
h(m,) mod n, then we say that the multiplicative signature is a valid 
signature of messages m,, w, ..., m,. 

Prooj A valid signature should satisfy three properties, as stated 
in the Introduction. Due to its homomorphic property, the 
multiplicative RSA signature can be easily verified according to 
Theorem 1. Thus, it satisfies the first requirement. 

Since the multiplicative signature is the product of all individual 
signatures and it requires a secret key to generate all these individ- 
ual signatures, any arbitrator is able to resolve any dispute 
between the signer and the verifier. Thus, it satisfies the third 
requirement. 

The only concern is whether an attacker (including the verifier) 
can forge a valid multiplicative signature without knowing the 
secret key. If the signer signs each message directly without apply- 
ing the one-way hash function, there is a possible attack to forge a 
valid multiplicative signature. The attacker can ask the signer to 
sign each message m, individually such that M = TC,=,’ m, mod n, and 
then the multiplicative signature becomes the valid signature of 
the message M. However, incorporating the one-way hash func- 
tion into the signature scheme, it is computationally infeasible (i.e. 
even for the signer) to obtain messages m,, %, ..., m,, such that 
h(M) = E~=/ h(mJ mod n. 

Thus, we conclude that the multiplicative RSA signature is a 
valid signature for all individual messages. Q.E.D. 
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Note that the signer can generate two individual signatures S1’ 
= &I2 and S,’ = 2S2 such that their product satisfies SI’ S,’ = S, 
S,. Since this ability can only be associated with the signer with a 
proper secret key, any related dispute can be easily solved. In 
addition, in case the batch verification fails, all individual signa- 
tures must be verified separately. 

Conclusion: We have proposed an efficient way to batch verify 
RSA signatures simultaneously. The performance of our scheme is 
almost constant. 
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ryptanalysis of ‘La yrinth‘ stream cipher 

S.R. Blackburn, K. Brincat, F. Mirza and S. Murphy 

Cryptanalysis of the stream cipher ‘Labyrinth’, a cipher recently 
proposed by Lin and Shepherd, is performed. Given only 230 
known bits of keystream, the 119 bit key of Labyrinth is recovered 
in under a second of computation using a DEC Alpha. 

Introduction: The stream cipher ‘Labyrinth’ has recently been pro- 
posed by Lin and Shepherd [2]. They suggest using Labyrinth in 
bulk data encryption applications, in particular for ATM packet- 
switching networks. The cipher has a 119bit key, and Lin and 
Shepherd report encryption speeds of 1.6Gbits-I when the cipher is 
implemented in hardware. 

This Letter contains a cryptanalysis of Labyrinth. This requires 
approximately bits of known keystream (-1s of the cipher’s 
output); simulations indicate that a DEC Alpha would recover the 
key of the cipher in < 1 s using this attack. 

Cipher: This section briefly describes Labyrinth. There are some 
misprints and ambiguities in the original paper [2]. Three misprints 
are: (i) Register A should have feedback polynomial y3 + x6 + XZ 
+ x3 + 1 (the polynomial given in the paper is not primitive); (ii) 
In the definition of Register B, the equations should ready, = x , ~  
0 (xl+l >> 15) and x, = y ,  0 (y, << 17); (iii) The first line of the 
description of the key controlled hash function in Section 2.4 
should read Y = ( U  0 V, V). For this reason we have additionally 
relied on a software simulation of the algorithm (written in C, and 
kindly provided by B. Lin) in producing this description. 

Labyrinth may be thought of as comprising two main compo- 
nents. The first compoiient is a linear finite state machine, its cur- 
rent state may be thought of as a binary vector v of length 107, 
the next state is obtained by multiplying the current state by a 
fixed (public) 107 x 107 invertible matrix M. The output of the 
finite state machine consists of a binary vector r of length 48. This 
vector is obtained from the current state v by calculating r = $(v), 
where 9: &Io7 + Z;ls is a fmed (public) linear function. The initial 
state of the fmite state machine is controlled by 96 bit of the key - 
these bits determine 96 of the 107 components of the initial state 
vo of the machine; the remaining components of v, are key inde- 
pendent (and public). 

The second component is a key- and time-dependent non-linear 
function$ The 23 key bits of the cipher not involved in determin- 
ing the initial state of the linear fmite state machine are used to 

determine this non-linear function. The function f takes the 48 bit 
vector r produced by the fmite state machine as input and pro- 
duces a 32 bit output. We describe f in more detail below. 

The 23 bits of key which mfluence f are broken up into three 
parts. The first part determines an odd integer t such that 1 I t I 
3 1 (and so this part consists of 4 bits). The second part determines 
an odd integer p such that 1 2 p 2 15 (and so this part consists of 
3 bits). The remaining 16 bits of key material determine a 16 bit 
string K. Given t ,  p ,  K and the 48 bit input vector r, the output of 
f a t  time i is calculated as follows. The 48 bit vector Y is regarded 
as eight 6 bit quantities r l ,  r,, ..., r8. For each n such that 1 5 n 5 8 
r, is fed into the nth S-box as detailed in the data encryption 
standard (DES) [1]; each S-box produces a 4bit output x,. The 
outputs x, are concatenated to form a 32bit quantity x. The 16 
most signifcant bits of x are modified by XORing them with the 
16 least significant bits of x, to produce the 32 bit quantity y .  The 
quantity y is then rotated t bits to the left to form the 32 bit quan- 
tity y’; we regard y’ as a 32 bit integer. Let K,’ be the 16bit quan- 
tity formed by rotating K a total of ip times. This is the only time 
dependent part of the functionf; note that K‘ = K,‘+,6 for all i. 
The output off is defined to be the sum modulo 232 of y’ and the 
32bit integer l whose 16 least significant bits are equal to the 16 
most significant bits of y’ and whose 16 most significant bits are 
equal to K.!.  

The cipher operates as follows. The initial state vo of the linear 
finite state machine is determined by 96 bits of the key. At time i, 
the cipher outputs a block of 32 bits of keystream given by 
f($(vM)), where f depends on the remaining 23 bits of key mate- 
rial and on the time i. The keystream block is then XORed with a 
32 bit plaintext block in the classic stream cipher fashion. 

Cryptanalysis: We cryptanalyse the cipher in two stages. In stage 
I, we obtain most of the key material that is used to control the 
non-linear function$ More precisely, we obtain the 16 bit string K 
and the integer p by using the fact that for a fmed key the function 
f is not quite surjective. We then guess the 4 bits of the key that 
determine the integer t used in the function$ In Stage 11, we use 
outputs of the S-box stage of the function f to determine a collec- 
tion of linear relations that the initial state v, of the linear finite 
state machine should satisfy. If our guess for the integer t in stage 
I was correct, these linear relations determine the initial state v, 
(and hence the remainder of the key). If our guess for the integer t 
was incorrect, the linear relations quickly become inconsistent and 
so we repeat the process with a different guess. 

Stage I: Key material controlling the non-linear function: We 
recover the key material associated with the quantities K and p by 
using the following lemma. 

Lemma 1 Let A and B be the 16 bit integers formed respectively 
from the most significant and least significant 16 bits of the 32 bit 
output off at time i. If B # 216 - 1, then the quantity K’ used in 
the computation off has the property that 

K,‘ # A - B - 1 mod 216 

Pro03 Let W and Z be the integers formed respectively from the 
most significant and least significant 16bits of the quantity y’ 
given in the description of $ The final stage of the calculation off 
gives us, for some E E {O, I}, 

2°K; + W + 216W + 2 = 2”2t + 216A + B 
Suppose for a contradiction that K,’ = A - B - 1 mod 216, so for 
some 6 E {0, l}, K,‘ = A - B -  1 + 6216. Then 

2 = { (216 - 1) (€ - 6 )  + (B - w + l)} (216 + 1) + ( E  - 6 - 1) 

If E = 6, then 2 = -I mod (2l6 + l), a contradiction. 
If E = 1, 6 = 0, then Z = 0 mod (216 + 1), so Z = 0. Thus 2Ih + 

B - W = 0, and so W -  B = 216, a contradiction. 
If E = 0, 6 = 1, then Z = -2 mod (216 + 1), so Z = 216 - 1. Thus 

{ B  - W -  (216 - 1))(216 + 1) = 0, so B - W = 216 - 1. Therefore W 
= 0 and B = 216 - 1, a contradiction. 

Since all three cases lead to a contradiction, K’ # A - B - 1 
mod 216 when B # 216 - I, as required. 

The rotation K’ of K is used in the production of every 16th 
output block. If we therefore decimate an output stream of blocks 
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