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The (t,n) threshold secret sharing schemes (SSs) were introduced by Shamir and Blakley
separately in 1979. Multilevel threshold secret sharing (MTSS) is a generalization of
classical threshold SS, and it has been studied extensively in the literature. In an MTSS,
shareholders are classified into different security subsets. The threshold value of a higher-
level subset is smaller than the threshold value of a lower-level subset. Shareholders in
each subset can recover the secret if the number of shares available is equal to or more
than a threshold value. Furthermore, the share of a shareholder in a higher-level subset
can be used as a share in the lower-level subset to recover the secret. Chinese Remainder
Theorem (CRT) is one of popular tools used for designing SSs. For example, the Mignotte’s
scheme and Asmuth–Bloom’s scheme are two classical (t,n) threshold SSs based on the
CRT. So far, there was no CRT-based MTSS in the literature. In this paper, we propose the
first MTSS based on the CRT. In our proposed scheme, one unique feature is that each
shareholder needs to keep only one private share. Our proposed scheme is based on the
Asmuth–Bloom’s SS which is unconditionally secure.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a secret sharing scheme (SS), a dealer divides a se-
cret s into n shares and shared among a set of n share-
holders, U = {U1, U2, ..., Un}, in such a way that any au-
thorized subset can reconstruct the secret s; whereas any
un-authorized subset cannot recover the secret s. The
(t,n) threshold secret sharing schemes were introduced
by Shamir [1] and Blakley [2] separately in 1979. A (t,n)

threshold secret sharing scheme allows any t or more than
t shareholders to reconstruct the secret s; while any fewer
than t shareholders cannot reconstruct the secret s. In
Shamir’s (t,n) threshold SS, a dealer generates n shares
based on a t − 1 degree polynomial. Secret reconstruction
is based on the Lagrange interpolating polynomial of any
t private shares. Shamir’s (t,n) SS is unconditionally se-
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cure. There are other types of SSs. For example, Blakley’s
scheme [1] is based on the geometry, Mignotte’s scheme
[3] and Asmuth–Bloom’s scheme [4] are based on the Chi-
nese Remainder Theorem (CRT).

Multilevel threshold secret sharing (MTSS) is a gener-
alization of classical threshold SS, and it has been studied
extensively in the literature [5–10]. In an MTSS, all share-
holders play different roles; while in a classical threshold
SS, all shareholders play the same role. Simmons [9] con-
sidered a setting where all shareholders are partitioned
into different levels, L1, L2, ..., Lm , and each level, Li , is as-
signed with a threshold value ti , for i = 1,2, ...,m. Note
that throughout this paper, the notations, Li and L j , where
i < j, indicate that the level Li is higher than the level L j .
In an MTSS scheme, when there are at least ti sharehold-
ers belonging to levels higher than or equal to the level Li ,
this subset of shareholders can reconstruct the secret. For
example, we assume that thresholds are t1 = 2 in level

http://dx.doi.org/10.1016/j.ipl.2014.04.006
0020-0190/© 2014 Elsevier B.V. All rights reserved.
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L1 and t2 = 3 in level L2. Then, two shareholders in L1,
or three shareholders in L2 can reconstruct the secret. In
addition, when there are one shareholder in L1 and two
shareholders in L2, this combination of shareholders can
also reconstruct the secret.

Brickell [6] proposed an ideal MTSS. However, his
scheme is inefficient since the dealer is required to com-
pute exponentially to ensure non-singular matrices. Gho-
dosi et al. [7] proposed an ideal MTSS scheme based on
Shamir’s threshold SS; but their schemes only work for
small number of shareholders. Lin et al. [10] proposed an
ideal MTSS based on the polynomial in 2009.

The CRT has been a popular tool used for designing
SSs. For example, the Mignotte’s scheme [3] and Asmuth–
Bloom’s scheme [4] are two classical (t,n) threshold SSs.
Kaya et al. [11] pointed out that both schemes cannot pre-
vent a corrupted dealer to distribute inconsistent shares to
shareholders. They have proposed a CRT-based VSS which
uses a range proof technique proposed by Boudot [12]. The
security of their VSS is based on the RSA assumption [13].
In addition, in 2009, Sarkar et al. [14] have proposed a
CRT-based RSA-threshold cryptography for a mobile ad hoc
network (MANET) and in 2011, Lu et al. have proposed a
secret key distributed storage scheme [15] based on CRT-
VSS and trusted computing technology. Quisquater et al.
[16] have shown that Asmuth–Bloom’s SS [4] is asymp-
totically optimal both from an information theoretic and
complexity theoretic viewpoint when the parameters sat-
isfy a simplified relationship.

So far, there was no CRT-based MTSS in the literature.
In this paper, we propose the first MTSS based on Asmuth–
Bloom’s scheme [4] which is unconditionally secure. One
unique feature of our proposed scheme is that each share-
holder needs to keep only one private share. This private
share can also be used in the lower-level subsets to recover
the secret.

The rest of this paper is organized as follows. In the
next section, we introduce some preliminaries that include
the definition of MTSS, the CRT, Mignotte’s and Asmuth–
Bloom schemes based on the CRT. In Section 3, we propose
an MTSS based on a simple modification of Asmuth–Bloom
scheme. In Section 4, we include the security analysis of
our proposed scheme. Conclusion is given in Section 5.

2. Preliminaries

In this section, we introduce some preliminaries that
are the fundamentals in our design including a definition
of MTSS, the CRT, Mignotte’s and Asmuth–Bloom schemes
based on the CRT.

2.1. Definition of MTSS

Definition 1 (Authorized set in a multilevel threshold se-
cret sharing scheme). Let L1, L2, ..., Lm , denote a parti-
tion of shareholders, (U1, U2, ..., Un), into multiple secu-
rity levels, i.e., U = (U1, U2, ..., Un) = ⋃m

j=1 L j . Let T =
(t1, t2, ..., tm) denote a sequence of threshold values, where
1 ≤ t j ≤ |L1| + |L2| + ... + |L j| for j = 1,2, ...,m, and
t1 < t2 < ... < tm . The authorized set (MA) of n sharehold-

ers in an (L, T ) multilevel threshold secret sharing (MTSS)
scheme is defined as

MA =
{

A ⊆ (U1, U2, ..., Un)
∣∣ ∃i ∈ {1,2, ...,m} and

∣∣∣∣∣A ∩
i⋃

j=1

L j

∣∣∣∣∣ ≥ ti

}
,

where A = (Ui1 , Ui2 , ..., Uit ) and Uik 	= Ui j if k 	= j for any
subset {i1, i2, ..., it} of {1,2, ...,n}.

2.2. The Chinese Remainder Theorem (CRT) [17]

Given following system of equations as

x = s1 mod p1;
x = s2 mod p2;

...

x = st mod pt,

there is one unique solution as x = ∑t
i=1

N
pi

· yi · si mod N ,

where N
pi

· yi mod pi = 1, and N = p1 · p · ... · pt , if all moduli
are pairwise coprime (i.e., gcd(pi, p j) = 1, for every i 	= j).

The CRT has been used in the RSA decryption to speed-
up the decryption process. With the knowledge of prime
decomposition of the RSA composite integer and using the
CRT, the complexity of RSA decryption is reduced by a fac-
tor of 1

4 . The CRT can also be used in the SS. Each of the
shares is represented in a congruence, and the solution of
the system of congruences using the CRT is the secret to be
recovered. SS based on the CRT uses, along with the CRT,
a special sequence of integers that guarantee the impos-
sibility of recovering the secret from a set of shares with
less than a certain cardinality. In the next subsections, we
will review two most well-known SSs based on the CRT.

2.3. Review of Mignotte’s (t,n) SS

Share generation: A sequence consists of pairwise coprime
positive integers, p1 < p2 < ... < pn , with pn−t+2 · ... · pn <

p1 · p2 · ... · pt , where pi is the public information asso-
ciated with each shareholder, Ui . For this given sequence,
the dealer chooses the secret s as an integer in the set
Z pn−t+2·...·pn,p1·p2·...·pt (i.e., Z pn−t+2·...·pn,p1·p2·...·pt is referred
to the range (pn−t+2 · pn−t+3 · ... · pn, p1 · p2 · ... · pt)). We
call the range, Z pn−t+2·...·pn,p1·p2·...·pt , the t-threshold range.

Share for the shareholder, Ui , is generated as
si = s mod pi , i = 1,2, ...,n. si is sent to shareholder, Ui ,
secretly.

Remark 1. The numbers in the t-threshold range,
Z pn−t+2·...·pn,p1·p2·...·pt , are integers upper bounded by p1 ·
p2 · ... · pt , which is the smallest product of any t moduli,
and lower bounded by pn−t+2 · pn−t+3 · ... · pn , which is the
largest product of any t − 1 moduli. The secret, s, selected
in this range can ensure that (a) the secret can be recov-
ered with any t or more than t shares (i.e., the product
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of their moduli must be either equal to or larger than the
upper bound, p1 · p2 · ... · pt ), and (b) the secret cannot be
obtained with fewer than t shares (i.e., the product of their
moduli must be either equal to or smaller than the lower
bound, pn−t+2 · ... · pn). Thus, the secret of a (t,n) threshold
SS should be selected from the t-threshold range.

Secret reconstruction: Given t distinct shares, for example,
{si1 , si2 , ..., sit }, the secret s can be reconstructed by solving
the following system of equations as

x = si1 mod pi1;
x = si2 mod pi2;

...

x = sit mod pit .

Using the standard CRT, a unique solution x is given as
x = ∑t

r=1
N

pir
· yir · sir mod N , where N = pi1 · pi2 · ... · pit ,

and N
pir

· yir mod pir = 1.

In Mignotte’s (t,n) threshold SS, information of the se-
cret may be leaked if there are fewer than t shareholders
participated in the secret reconstruction.

2.4. Review of Asmuth–Bloom (t,n) SS [4]

Share generation: In Asmuth–Bloom (t,n) SS, the dealer
selects p0 and a sequence of pairwise coprime positive in-
tegers, p1 < p2 < ... < pn , such that p0 · pn−t+2 · ... · pn <

p1 · p2 · ... · pt , and gcd(p0, pi) = 1, i = 1,2, ...,n, where
pi is the public information associated with each share-
holder, Ui . For this given sequence, the dealer chooses the
secret s as an integer in the set Z p0 . The dealer selects an
integer, α, such that s + αp0 ∈ Z pn−t+2·pn−t+3·...·pn,p1·p2·...·pt .
We want to point out that the value, s + αp0, needs to be
in the t-threshold range, Z pn−t+2·pn−t+3·...·pn,p1·p2·...·pt ; other-
wise, the value, s + αp0, can be obtained with fewer than
t shares. However, in the original paper [4], it specifies
that the value, s +αp0, is in the set, Z p1·p2·...·pt . This range
is different from the t-threshold range. In other words, if
s + αp0 is selected to be smaller than the lower bound
of the t-threshold range (i.e., but it is still in the range,
Z p1·p2·...·pt ), then the value, s + αp0, can be obtained with
fewer than t shares. It is obvious that this situation vio-
lates one of the security requirements of the (t,n) SS.

Share for the shareholder, Ui , is generated as si = s +
αp0 mod pi , and si is sent to shareholder, Ui , secretly, for
i = 1,2, ...,n.

Secret reconstruction: Given a subset of t distinct shares,
for example, {si1 , si2 , ..., sit }, the secret s can be recon-
structed by solving the following system of equations as

x = si1 mod pi1;
x = si2 mod pi2;

...

x = sit mod pit .

Using the standard CRT, a unique solution x is given as
x = ∑t

r=1
N

pir
· yir ·sir mod N , where N = pi1 · pi2 · ... · pit , and

N
pir

· yir mod pir = 1. Then, the secret s can be recovered by

computing s = x mod p0.
Asmuth–Bloom (t,n) SS does not leak useful informa-

tion if there are fewer than t shareholders participating in
the secret reconstruction [4].

3. Proposed scheme

In our proposed scheme, each shareholder has to keep
only one share. We assume that shareholders are classified
into m subsets, Li , i = 1,2, ...,m, where Lm is the lowest
level of subsets and L1 is the highest level of subsets. Each
subset, Li , has the threshold, ti . Shares belonging to the
subset, Li , or any subset with higher security level than
the subset, Li , can be used to recover the secret, s, if the
number of shares available is equal to or more than the
threshold, ti (i.e., ≥ ti ). The threshold of a higher-level sub-
set is always smaller than the threshold of a lower-level
subset (i.e., t j > ti if i < j). In the secret reconstruction by
shares in the subset, Li , and in any subset with higher se-
curity level, it needs to satisfy the following conditions:
(a) the secret can be reconstructed if the number of shares
is ti or more than ti , and (b) the secret cannot be recon-
structed when the number of shares is fewer than ti . The
proposed scheme consists of two phases: shares generation
and secret reconstruction.

Share generation: The dealer selects an integer p0 initially.
For each subset, Li , having ni shareholders, the dealer
selects a sequence of pairwise coprime positive integers,
pi

1 < pi
2 < ... < pi

ni
, such that p0 · pi

ni−ti+2 · pi
ni−ti+3 · ... ·

pi
ni

< pi
1 · pi

2 · ... · pi
ti

, and gcd(p0, pi
k) = 1, k = 1,2, ...,ni ,

where pi
k is the public information associated with share-

holder, U i
k , in the subset Li . For this given sequence, the

dealer chooses the secret s as an integer in the set Z p0 . The
dealer selects an integer, αi , such that pi

ni−ti+2 · pi
ni−ti+3 ·

... · pi
ni

< s + αi p0 < pi
1 · pi

2 · ... · pi
ti

. We want to point out
that the value, s + αi p0, needs to be in the ti -threshold
range, Z pi

ni−ti+2 pi
ni−ti+3·...·pi

ni
,pi

1·pi
2·...·pi

ti
; otherwise, the value,

s + αi p0, can be obtained with fewer than ti shares. Share
for the shareholder, U i

k , is generated as si
k = s + αi p0 mod

pi
k . si

k is sent to shareholder, U i
k , secretly.

Furthermore, in order to enable private share, si
k , of

the shareholder, U i
k , in Li to be used as a share in L j ,

the dealer needs to select a parameter, pi
k, j , such that

p j
t j

< pi
k, j < p j

n j−t j+2. Then, the dealer computes Δsi
k, j

such that (s + α j p0 − si
k) mod pi

k, j = Δsi
k, j (i.e., s + α j p0 −

(si
k + Δsi

k, j) = β i
k, j pi

k, j ). Note that the private share, si
k ,

needs to be modified into si
k +Δsi

k, j if it is used as a share
in the lower security level, L j , and is associated with the
modulus, pi

k, j . (Δsi
k, j, pi

k, j) is the public information as-

sociated with shareholder, U i
k , while participating in the

secret reconstruction in the subset L j . All selected pi
k, j

should be relatively coprime to all other moduli. The value,
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pi
k, j , needs to be selected in the specified range, other-

wise, either (a) the secret s + α j p0 can be obtained with
fewer than t j shares, or (b) the secret s + α j p0 cannot be
obtained with t j or more than t j shares. Theorem 1 will
prove this statement.

In summary, at the end of this phase, each shareholder,
U i

k , in the subset, Li , will have one private share, si
k , and

following public information, where pi
k is the modulus

used in the subset, Li , and (Δsi
k, j, pi

k, j), for j = i + 1, i + 2,

...,m, are share modification and modulus used in other
subsets (i.e., i < j). Furthermore, we want to point out
the following trade-offs in our proposed scheme. That are,
(a) each shareholder keeps only one share, and (b) there is
public information associated with each shareholder, U i

k ,
while participating in the secret reconstruction in other
subset L j .

Theorem 1. If p j
t j

< pi
k, j < p j

n j−t j+2 , where j > i, the share

si
k in Li used as a share in L j reconstructing the secret satisfies

(a) the secret can be reconstructed when the number of shares
is t j or more than t j , and (b) the secret cannot be reconstructed
when the number is fewer than t j .

Proof. If p j
t j

< pi
k, j < p j

n j−t j+2, the condition, p j
t j

< pi
k, j ,

ensures that the parameter, pi
k, j , is larger than the largest

modulus in the upper bound of the t j-threshold range. In
other words, it ensures that when the share is used as
a share in the subset, L j , the modulus associated with
this share is no smaller than the largest modulus in the
t j-threshold range. Thus, this share and t j − 1 other shares
in the subset, L j , can recover the secret. On the other

hand, the condition, pi
k, j < p j

n j−t j+2, ensures that the mod-

ulus, pi
k, j , is smaller than the smallest modulus in the

lower bound of the t j-threshold range. In other words, it
ensures that when the share is used as a share in the
subset, L j , the modulus associated with this share is no
larger than the smallest modulus in the lower bound of
the t j -threshold range. Thus, this share and t j − 2 other
shares in the subset, L j , cannot recover the secret. In sum-
mary, with both conditions, it ensures that this share is
equivalent to one share exactly in the lower-level subset.

Let use the following scenarios to illustrate this theo-
rem. We assume that t j = 5 in the following discussion.

(Case 1) Assume that there are 4 shareholders, U j
r ,

r = 1,2,3,4, in the subset, L j , and one shareholder, U i
5,

in the subset, Li , where j > i. In this case, the total num-
ber of shares in the subset, L j , is 5. Thus, the share of
shareholder, U i

5, can be used as a share in the subset,
L j , to recover the secret. Let us examine this case. Since

p j
5 < pi

5, j < p j
n j−3, the product of all moduli associated

with these shareholders satisfies p j
1 · p j

2 · p j
3 · p j

4 · pi
5, j >

p j
1 · p j

2 · p j
3 · p j

4 · p j
5. In other words, since the product of their

moduli is larger than the upper bound of the t j -threshold
range, the secret can be recovered.

(Case 2) We assume that there are 3 shareholders, U j
r ,

r = 1,2,3, in the subset, L j , and one shareholder, U i
4, in

the subset, Li , where j > i. The total number of shares in
the subset, L j , is 4. Thus, the share of shareholder, U i

4, can-
not be used as a share in the subset, L j , to recover the

secret. Let us examine this case. Since p j
5 < pi

4, j < p j
n j−3,

the product of all moduli of these shareholders satisfies
p j

1 · p j
2 · p j

3 · pi
4, j < p j

n j−3 · p j
n j−2 · p j

n j−1 · p j
n j

. In other words,

since the product of their moduli is smaller than the lower
bound of the t j-threshold range, the secret cannot be re-
covered. �
Secret reconstruction: The secret can be recovered if the
number of shares belonging to the subset, L j , or any sub-
set with higher security level than the subset, L j , is equal
to or more than the threshold, t j (i.e., ≥ t j ). A system
of equations can be established based on all shares. Any
share, si

k , of shareholder, U i
k , belonging to a subset with a

higher security level needs to be modified as (si
k + Δsi

k, j),

and pi
k, j is used as the modulus corresponding to the mod-

ified share, (si
k + Δsi

k, j), of shareholder, U i
k , in constructing

the system of equations. Using the standard CRT, a unique
solution x = s +α j p0 can be obtained. Then, the secret s is
recovered by computing s = x mod p0.

Remark 2. During the secret reconstruction, there is no
need of the dealer and no need to compute β i

k, j by share-

holder, U i
k . The relation, s + α j p0 − (si

k + Δsi
k, j) = β i

k, j pi
k, j

specified in the share generation ensures that the modi-
fied share, si

k +Δsi
k, j (i.e., i < j), of shareholder, U i

k , can be
used as a share in the subset L j , and is associated with the
modulus, pi

k, j .

We use the following numerical example to illustrate
our proposed scheme.

Example 1. In this example, we assume that shareholders
are classified into 3 subsets, Li , i = 1,2,3, where L3 is the
lowest level of subsets and L1 is the highest level of sub-
sets. The thresholds of subsets are t1 = 2, t2 = 3 and t3 = 4.
Furthermore, the numbers of shareholders in subsets are
n1 = 3, n2 = 4 and n3 = 5. The share of a shareholder in
the higher-level subset, Li , can be used as a share in the
lower-level subset, L j , to recover the secret (i.e., i < j).

The dealer selects a secret, s = 102, and p0 = 113, ini-
tially. In the subset, L1, the integers associated with share-
holders, U 1

k , k = 1,2,3, are p1
1 = 137, p1

2 = 139, and p1
3 =

250. The t1-threshold range is (250,19 043). The dealer se-
lects α1 = 150 and s+α1 p0 = 17 052 which is in the above
range. The shares are s1

1 = 64, s1
2 = 94, and s1

3 = 52.
In the subset, L2, the integers associated with share-

holders, U 2
k , k = 1,2,3,4, are p2

1 = 293, p2
2 = 307, p2

3 =
313, and p2

4 = 319. The t2-threshold range is (99 847,

28 154 663). The dealer selects α2 = 6864 and s + α2 p0 =
775 734 which is in the above range. The shares are s2

1 =
163, s2

2 = 252, s2
3 = 120 and s2

4 = 245.
In the subset, L3, the integers associated with share-

holders, U 3
k , k = 1,2, ...,7, are p3

1 = 229, p3
2 = 233, p3

3 =
239, p3

4 = 241, p3
5 = 277, p3

6 = 281, and p2
7 = 283. The

t3-threshold range is (22 027 871,3 073 309 843). The dealer
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selects α3 = 194 946 and s + α3 p0 = 22 029 000 which
is in the above range. The shares are s3

1 = 116, s3
2 = 15,

s3
3 = 131, s3

4 = 154, s3
5 = 21, s3

6 = 5, and s3
7 = 280.

Shares of shareholders in the higher-level subset, Li , for
example U 1

3 in the subset, L1, and U 2
3 and U 2

4 in the sub-
set, L2, can be used as shares in the subset, L3. The dealer
first selects moduli, p1

3,3 = 263, p2
3,3 = 269 and p2

4,3 = 251

which satisfy 241 = p3
4 < p1

1,3, p2
1,3, p2

4,3 < p3
5 = 277 and

are coprime to one another. Then, the dealer evaluates
Δs1

3,3, Δs2
3,3 and Δs2

4,3 accordingly, where (Δsi
k, j, pi

k, j) is

the public information associated with the shareholder, U i
k ,

while participating in the subset L j . Thus, the dealer eval-
uates ((s + α3 p0 − s1

3) mod p1
3,3) = (22 029 000 − 52) mod

263 = 68 and the public information associated with U 1
3

in the subset, L3, is (68,263). In the same way, the public
information associated with U 2

3 and U 2
4 , (Δs2

3,3, p2
3,3) and

(Δs2
4,3, p2

4,3), respectively, in the subset L3, are computed
as (201,269) and (242,251).

Now, let us consider following cases in reconstructing
the secret.

(Case 1) Assume that U 1
3 in the subset L1, U 2

4 in the sub-
set L2, and U 3

3 and U 3
6 in the subset L3, work together to

recover the secret. Since the total number of shares in the
subset L3 is 4, they can use their shares, s1

3 = 52, s2
4 = 245,

s3
3 = 131, s3

6 = 5, and the public information, (Δs1
3,3, p) =

(68,263), (Δs2
4,3, p2

4,3) = (242,251), p3
3 = 239, p3

6 = 281, to
compute the secret by solving the following system of
equations as

x = (
s1

3 + Δs1
3,3

)
mod p1

3,3;
x = (

s2
4 + Δs2

4,3

)
mod p2

4,3;
x = s3

3 mod p3
3;

x = s3
6 mod p3

6.

Using the standard CRT, a unique solution x is given as

x =
(

N

p1
3,3

· y1
3,3 · ((s1

3 + Δs1
3,3

)
mod p1

3,3

)

+ N

p2
4,3

· y2
4,3 · ((s2

4 + Δs2
4,3

)
mod p2

4,3

)

+ N

p3
3

· y3
3 · s3

3 + N

p3
6

· y3
6 · s3

6

)
mod N

= (
16 856 909 · 218 · ((68 + 52) mod 263

)
+ 17 662 817 · 161 · ((242 + 245) mod 251

)
+ 18 549 653 · 221 · 131

+ 15 777 107 · 170 · 5
)

mod 4 433 367 067

= (440 976 739 440 + 671 116 394 732

+ 537 031 004 003

+ 13 410 540 950) mod 4 433 367 067

= 22 029 000.

Then, the secret is obtained as s = x mod p0 =
22 029 000 mod 113 = 102.

(Case 2) Assume that U 2
3 and U 2

4 in the subset L2, and
U 3

1 and U 3
2 in the subset L3, work together to recover the

secret. Since the total number of shares in the subset L3
is 4, they are able to compute the secret by solving the
following system of equations as

x = (
s2

3 + Δs2
3,3

)
mod p2

3,3;
x = (

s2
4 + Δs2

4,3

)
mod p2

4,3;
x = s3

1 mod p3
1;

x = s3
2 mod p3

2.

Using the standard CRT, a unique solution x is given as

x =
(

N

p2
3,3

· y2
3,3 · ((s2

3 + Δs2
3,3

)
mod p2

3,3

)

+ N

p2
4,3

· y2
4,3 · ((s2

4 + Δs2
4,3

)
mod p2

4,3

)

+ N

p3
1

· y3
1 · s3

1 + N

p3
2

· y3
2 · s3

2

)
mod N

= (
13 392 607 · 14 · ((120 + 201) mod 269

)
+ 14 353 033 · 123 · ((245 + 242) mod 251

)
+ 15 731 927 · 97 · 116

+ 15 461 851 · 8 · 15
)

mod 3 602 611 283

= (9 749 817 896 + 416 639 841 924 + 177 015 642 604

+ 1 855 422 120) mod 3 602 611 283

= 22 029 000.

Then, the secret is obtained as s = x mod p0 =
22 029 000 mod 113 = 102.

(Case 3) Assume that U 1
3 in the subset L1, U 2

4 in the sub-
set L2, and U 3

5 in the subset L3, work together to recover
the secret. Since the total number of shares in the sub-
set L3 is 3, in the following discussion, we show that they
cannot use their shares, s1

3 = 52, s2
4 = 245, s3

5 = 21, and the
public information, (Δs1

3,3, p1
3,3) = (68,263), (Δs2

4,3 p2
4,3) =

(242,251) and p3
5 = 277, to obtain the secret. With their

shares, they can form the following system of equations as

x = (
s1

3 + Δs1
3,3

)
mod p1

3,3;
x = (

s2
4 + Δs2

4,3

)
mod p2

4,3;
x = s3

5 mod p3
5.

Using the standard CRT, a unique solution x′ is given as

x′ =
(

N ′

p1
3,3

· y1
3,3 · ((s1

3 + Δs1
3,3

)
mod p1

3,3

)

+ N ′

p2
4,3

· y2
4,3 · ((s2

4 + Δs2
4,3

)
mod p2

4,3

)

+ N ′

p3
5

· y3
5 · s3

5

)
mod N ′

= (69 527 · 36 · 120 + 72851 · 107 · 236
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+ 66 013 · 121 · 21) mod 18 285 601

= 2 307 729 125 mod 18 285 601

= 3 743 399.

Then, they obtain s′ = x′ mod p0 = 3 743 399 mod 113 =
48 which is different from the secret.

4. Security analysis

Let us analyze the security in the secret reconstruction.
First, since s + αi p0 ∈ Z pi

ni−ti+2 pi
ni−ti+3·...·pi

ni
,pi

1·pi
2·...·pi

ti
, this

condition can ensure that (a) the secret can be recovered
if there are ti or more than ti shares; and (b) the secret
cannot be obtained if there are fewer than ti shareholders.
With Theorem 1, we can conclude that (a) the secret can
be recovered if the total number of available shares in the
subsets, {L1, L2, ..., Li}, is ti or more than ti , and (b) the se-
cret cannot be recovered if the total number of shares in
the subsets, {L1, L2, ..., Li}, is less than ti .

Just like the Asmuth–Bloom (t,n) SS [4], this proposed
scheme is a unconditionally SS since the security does
not depend any computational assumption. Let us assume
that in our proposed secret reconstruction, there are ti − 1
shareholders available and the product of their moduli
is N ′ . Then, with their shares, shareholders can use CRT to
obtain a value, 0 < x′ < N ′ , where N ′ < pi

ni−ti+2 · pi
ni−ti+3 ·

... · pi
ni

. This recovered value, x′ , is not the real secret; but
has the following relation, x = x′ +λN ′ , with respect to the
real secret value, x = s + αi p0. By properly guessing λ, the
secret may be obtained. However, there is only one real

value out of
pi

1·pi
2·...·pi

t−pi
ni−ti+2·pi

ni−ti+3·...·pi
ni

pi
ni−ti+2·pi

ni−ti+3·...·pi
ni

> p0 − 1 possi-

ble values, where pi
1 · pi

2 · ... · pi
t − pi

ni−ti+2 · pi
ni−ti+3 · ... · pi

ni

is the length of the ti -threshold range. Since the collection
of possible values of λ is no less than the collection of pos-
sible values of the secret s, no useful information is leaked
from the collection of shares.

The security of this secret reconstruction is the same as
the Asmuth–Bloom’s SS which is unconditionally secure.

5. Conclusion

We proposed the first MTSS based on the CRT. The
security of our proposed scheme is the same as the As-
muth–Bloom’s SS which is unconditionally secure. In our
proposed scheme, shareholders are classified into differ-
ent security subsets and each subset has different thresh-
old. The secret can be recovered when there are enough
number of shares available. In an MTSS, any share in the

higher-level subset can be used as a share in the lower-
level subset to recover the secret. One unique feature of
our proposed MTSS is that each shareholder keeps only
one private share.
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