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Abstract Secure communication has become more and more important for system secu-
rity. Since avoiding the use of encryption one by one can introduce less computation com-
plexity, secret sharing scheme (SSS) has been used to design many security protocols. In
SSSs, several authors have studied multipartite access structures, in which the set of par-
ticipants is divided into several parts and all participants in the same part play an equiv-
alent role. Access structures realized by threshold secret sharing are the simplest multi-
partite access structures, i.e., unipartite access structures. Since Asmuth–Bloom scheme
based on Chinese remainder theorem (CRT) was presented for threshold secret sharing,
recently, threshold cryptography based on Asmuth–Bloom secret sharing were firstly pro-
posed by Kaya et al. In this paper, we extend Asmuth–Bloom and Kaya schemes to
bipartite access structures and further investigate how SSSs realizing multipartite access
structures can be conducted with the CRT. Actually, every access structure is multipar-
tite and, hence, the results in this paper can be seen as a new construction of general SSS
based on the CRT. Asmuth–Bloom and Kaya schemes become the special cases of our
scheme.
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1 Introduction

Secret sharing was first introduced by Blakley [1] and Shamir [2] independently in 1979,
which was widely used to design security protocols until now (see [3–7]). In a secret sharing
scheme (SSS), a dealer distributes a piece of information (called a share) about a secret to
each participant such thatauthorized subsets of participants can reconstruct the secret but
unauthorized subsets of participants cannot determine the secret. If any unauthorized subset
of participants can not obtain any information about the secret, then the scheme is called
perfect. The set of authorized subsets of participants is called access structure and the set
of unauthorized subsets of participants is called prohibited structure. In the literature, differ-
ent mathematical tools have been used to design SSSs including Shamir scheme [2] based
on polynomial interpolation, Blakley scheme [1] based on hyperplane geometry, Asmuth–
Bloom scheme [8] based on the Chinese Remainder Theorem (CRT), Bloom scheme [9] and
McEliece et al. scheme [10] based on a linear code. These schemes are all threshold secret
sharing (SS), in which any t or more shares can recover the secret, but any t −1 or less shares
can obtain no information about the secret. Among these SSs, Shamir scheme [2] is the most
popular SS. Shamir scheme is very simple and most straightforward but Asmuth–Bloom
scheme needs to understand the CRT. In recent years, attention has been devoted to research
of CRT-based SSs and applications [11–15].

Information rate (i.e., the ratio between the size of the secret in bits and the maximum size
of a share in bits) is usually used to measure the efficiency of a SSS. A scheme is ideal if the
information rate is equal to 1. The central research questions in SS are both the construction
of efficient SSSs for several classes of access structures, and finding bounds on the possible
efficiency that any such scheme can achieve for a certain access structure. In this paper,
we deal with multipartite access structures. An access structure is multipartite if its set of
participants can be divided into several parts in such a way that all participants in the same part
play an equivalent role in the structure. Because of its practical interest, SS for multipartite
access structures has been studied by several authors. Since we can always consider as many
parts as participants, every access structure is multipartite. More accurately, we can consider
in any access structure the partition that is derived from a suitable equivalence relation on the
set of participants. Therefore, we are not restricting ourselves to a family of access structures,
but we study the general access structures under a different point of view.

Multipartite access structures were first introduced by Shamir [2] in his seminal work,
in which weighted threshold access structures were considered. These structures have been
studied also in [16,17] and a characterization of the ideal weighted access structures has
been presented in [18]. Brickell [19] constructed ideal SSSs for several different kinds of
multipartite access structures, called multilevel and compartmented, that had been previously
considered by Simmons [20]. Other constructions of ideal schemes for these and other mul-
tipartite structures have been presented in [21–24], where some complexity issues related
to the construction of those ideal schemes are studied. A complete characterization of ideal
bipartite access structures was given in [17] and, independently, in [25,26]. Partial results on
the characterization of ideal tripartite access structures have been presented in [18,21,27].
A complete characterization of ideal tripartite access structures were given by Farras and
Marti-Farre [28].

Access structure realized by the threshold SS is the simplest multipartite access structure,
i.e., unipartite access structures. Most well-known CRT-based SSSs were constructed for
threshold access structures, such as Asmuth–Bloom scheme [8], Mignotte’s scheme [29]
and Kaya’s schemes [11,12]. Other CRT-based SS of general access structures in which
compartmented access structures and weighted threshold access structures are considered is
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proposed in [13]. But these structures in [13] only belong to two types of multipartite access
structures [28]. Due to the fact that every access structure can be viewed as multipartite access
structure, this motivates us to explore the design of CRT-based sharing schemes realizing
multipartite access structures.

Instead of studying SSS realizing a particular family of access structures, in this paper,
we study CRT-based general SSS from the perspective of multipartite SSS. We extend both
Asmuth–Bloom and Kaya schemes to bipartite access structures and investigate the design
of CRT-based SSSs realizing multipartite access structures. The result presented in this paper
is a new way to construct CRT-based general secret sharing. Thus, Asmuth–Bloom and Kaya
schemes become special cases in our proposed approach. The main contributions of our paper
are summarized below:

(a) Using the characterizations of multipartite access structures, we propose the first CRT-
based multipartite SSS;

(b) Due to the fact every access structure is multipartite, our result is a new way to construct
CRT-based general SS;

(c) Our proposed CRT-based multipartite SSS is perfect and unconditionally secure since
there has not any computational assumption based on.

(d) Our proposed scheme can be widely applied to wireless communications to ensure its
security.

The rest of this paper is organized as follows: In the next section, we give some preliminar-
ies. In Sect. 3, we propose a multipartite SSS based on CRT. We analyze functional sharing
schemes in Sect. 4. Performance evaluation of the proposed scheme is discussed in Sect. 5.
We conclude in Sect. 6.

2 Definitions and Preliminaries

In this section we review some basic definitions and notations that will be used through the
paper.

2.1 Secret Sharing Schemes

Let P = {pi : 1 ≤ i ≤ n} be the set of participants. The dealer is denoted by D and we assume
D /∈ P . K is the secret set (i.e. the set of all possible secrets) and S is the share set (i.e. the
set of all possible shares). Let � be a set of subsets of P: this is denoted mathematically
by the notation � ⊆ 2P . The subsets in � are those subsets of participants that should be
able to reconstruct the secret. � is called an access structure and the subsets in � are called
authorized subsets. Accordingly, � = 2P\� is called a prohibited structure and the subsets
in � are called unauthorized subsets.

When a dealer D wants to share a secret K ∈ K, he will give each participant a share
from S. The shares should be distributed secretly, so no participant knows the share given
to another participant. At a later time, a subset of participants will attempt to reconstruct K
from the shares they collectively hold. Using Shannon’s entropy function, we will say that a
scheme is a perfect SSS realizing the access structure � provided the following two properties
are satisfied:

1. Validity H(K |A) = 0,∀A ∈ �. (Any authorized subset of participants A ∈ � who pool
their shares together can reconstruct the secret K ),
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2. Security H(K |A) = H(K ),∀A ∈ �. (Any unauthorized subset of participants A ∈ �

who pool their shares together obtain no information on K ).

The security of cryptographic schemes/protocols can be classified into two types, computa-
tional security and unconditional security. Computational security assumes that the adversary
has bounded computing power that limits the adversary solving hard mathematical problem,
such as factoring a large composite integer into two primes. Unconditional security means
that the security holds even if the adversary has unbounded computing power. If a scheme is
unconditional secure [30], then no matter how much computational power the attacker cannot
break this scheme. Research on developing cryptographic schemes/protocols with uncondi-
tional security has received wide attention recently. In this paper, we propose to design a
perfect and unconditionally secure SSS.

Suppose that B ∈ �, B ⊆ C ⊆ P , and the subset C wants to determine K . Since B is
an authorized subset, it can already determine K . Hence, the subset C can determine K by
ignoring the shares of the participants in C\B. Stated another way, a superset of an authorized
set is again an authorized set. What this says is that the access structure should satisfy the
monotone increasing property

if B ∈ � and B ⊆ C ⊆ P, then C ∈ �.

If � is an access structure, then B ∈ � is a minimal authorized subset if A /∈ � whenever
A ⊆ B, A �= B. The set of minimal authorized subsets of � is denoted �0 and is called
the basis of �. Since � consists of all subsets of P that are supersets of a subset in the basis
�0, � is determined uniquely as a function of �0. Expressed mathematically, we have

� = {C ⊆ P : B ⊆ C, B ∈ �0} .

Symmetrically, the prohibited structure � should satisfy the monotone decreasing property

if B ∈ � and C ⊆ B ⊆ P, then C ∈ �.

We say B ∈ � is a maximal unauthorized subset if A /∈ � whenever B ⊆ A, A �= B.The
set of maximal unauthorized subsets of � is denoted �1. Since � consists of all subsets of P
that are subsets of a subset in �1, � is determined uniquely as a function of �1. Expressed
mathematically, we have

� = {C ⊆ P : C ⊆ B, B ∈ �1} .

The efficiency of a SSS is measured by the information rate. Suppose F is a set of
distribution rules for a SSS. For 1 ≤ i ≤ n, define

Si = { f (pi ) : f ∈ F} .

f represents a possible distribution rule and f (pi ) is the share given to pi . Si represents the
set of possible shares that pi might receive, of course, Si ⊆ S. Now, since the secret K comes
from a finite set K, we can think of K as being represented by a bit string of length log2 |K| by
using a binary encoding, for example. In a similar way, a share given to pi can be represented
by a bit string of length log2 |Si |. Intuitively, pi receives log2 |Si | bits of information (in his
or her share), but the information content of the secret is log2 |K| bits. The information rate
of the scheme denoted by ρ is the ratio

ρ = log2 |K|
log2 max {|Si |}
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2.2 Multipartite Access Structures

We write P(P) for the power set of the set P . An r -partition � = {P1, . . . , Pr } of a set P is a
disjoint family of r nonempty subsets of P with P = P1∪· · ·∪ Pr . Let � ⊆ P(P) be a family
of subsets of P . For a permutation σ on P , we define σ(�) = {σ(A) : A ∈ �} ⊆ P(P). A
family of subsets � ⊆ P(P) is said to be �-partite if σ(�) = � for every permutation σ

such that σ(Pi ) = Pi for every Pi ∈ �. We say that � is r -partite if it is �-partite for some
r -partition �. These concepts can be applied to access structures, which are actually families
of subsets.

For every integer r ≥ 1, we consider the set Jr = {1, . . . , r}. Let Z
r+ denote the set of

vectors u = (u1, . . . , ur ) ∈ Z
r with ui ≥ 0 for every i ∈ Jr . For a partition � = {P1, . . . , Pr }

of a set P and for every A ⊆ P and i ∈ Jr , we define �i (A) = |A ∩ Pi |. Then the partition
� defines a mapping � : P(P) → Z

r+ by considering �(A) = (�1(A), . . . , �r (A)). If
� ⊆ P(P) is �-partite, then A ∈ � if and only if �(A) ∈ �(�). That is, � is completely
determined by the partition � and the set of vectors �(�) ⊂ Z

r+.
If u, v ∈ Z

r+, we write u ≤ v if ui ≤ vi for every i ∈ Jr , and we write u < v if u ≤ v

and u �= v. The vector w = u ∨ v is defined by wi = max(ui , vi ). The modulus of a vector
u ∈ Z

r+ is |u| = u1 + · · · + ur . For every subset X ⊆ Jr , we write u(X) = (ui )i∈X ∈ Z
|X |
+

and |u(X)| = ∑
i∈X ui .

2.3 Asmuth–Bloom SSS

The Asmuth–Bloom SSS has shares distribution and secret reconstruction phases for unipar-
tite access structures as follows:

Shares Distribution To distribute n shares of a secret K among the set of participants
P = {pi : 1 ≤ i ≤ n}, the dealer D does the following:

1. A set of integers {p, m1 < m2 < · · · < mn}, where 0 ≤ K < p, is chosen subject to
the following:

gcd(mi , m j ) = 1 for i �= j,

gcd(p, mi ) = 1 for all i,
t∏

i=1

mi > p
t−1∏

i=1

mn−i+1. (1)

2. Let M = ∏t
i=1 mi . The dealer computes

y = K + ap,

where a is a positive integer generated randomly subject to the condition that 0 ≤ y < M .
3. The share of the i th participant, 1 ≤ i ≤ n, is

yi = y mod mi .

Secret Construction Assume C is a coalition of t participants to construct the secret. Let
MC = ∏

i∈C mi .

1. Given the system

y ≡ yi (mod mi )

for i ∈ C , solve y in GF(MC ) uniquely using the CRT.
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2. Compute the secret as

K = y mod p.

According to the CRT, y can be determined uniquely in GF(MC ). Since y < M ≤ MC ,
the solution is also unique in GF(M).

3 The Proposed Schemes

In this section we extend the Asmuth–Bloom SSS from unipartite to bipartite access structures
and further investigate how SSSs realizing multipartite access structures can be conducted
with the CRT. At the same time, the validity and security proofs of our scheme are given.

3.1 Bipartite SS Based on CRT

Let an access structure � be �-partite for a partition � = {P1, P2} of P = {pi : 1 ≤ i ≤ n},
where |P1| = n1, |P2| = n2 and n1 + n2 = n. Then the partition � defines a mapping
� : P(P) → Z

2+. Let �0 and �1 be the corresponding minimal access structure and maximal
prohibited structure respectively, from which we can determine �(�0) ⊂ Z

2+ and �(�1) ⊂
Z

2+.
The secret sharing scheme for � has shares distribution and secret reconstruction phase

as follows:

Shares Distribution To distribute n shares of a secret K among P = {pi : 1 ≤ i ≤ n}, the
dealer D does the following:

1. A set of integers
{

p, m1 < m2 < · · · < mn1 , mn1+1 < mn1+2 < · · · < mn
}
, where 0 ≤

K < p, is chosen subject to the following:

gcd(mi , m j ) = 1 for i �= j,

gcd(p, mi ) = 1 for all i,

M1 = min

⎛

⎝
u1∏

i=1

mi

u2∏

j=1

m j , for all (u1, u2) ∈ �(�0)

⎞

⎠ ,

M2 = max

⎛

⎝
v1∏

i=1

mn1+i−1

v2∏

j=1

mn2+ j−1, for all (v1, v2) ∈ �(�1)

⎞

⎠ ,

M1 > pM2. (2)

2. The dealer computes

y = K + ap

where a is a positive integer generated randomly subject to the condition that 0 ≤ y < M1.
3. The n1 shares,

yi = y mod mi for i = 1, . . . , n1,

are distributed randomly to participants in P1 with one to one correspondence, and the
n2 shares,

yn1+ j = y mod mn1+ j for j = 1, . . . , n2,
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are distributed randomly to participants in P2 with one to one correspondence. Hence,
the shares distribution defines a mapping f : {y1, . . . , yn} → P .

Secret Construction Assume C is a coalition of participants in � to construct the secret.
Let MC = ∏

f (yi )∈C mi .

1. Given the system

y ≡ yi (mod mi )

for f (yi ) ∈ C , solve y in GF(MC ) uniquely using the CRT.
2. Compute the secret as

K = y mod p.

Theorem 1 The proposed bipartite SSS is a perfect SSS.

Proof According to the Chinese remainder theorem (CRT) [31], in which given the following
system of equations as

x = s1 mod p1;
x = s2 mod p2;

...

x = st mod pt ,

there is one unique solution as x = ∑t
i=1

N
pi

· yi · s1 mod N , where N
pi

· yi mod pi = 1,

and N = p1 · p2 · . . . · pt , if all moduli are pairwise coprime (i.e., gcd(pi , p j ) = 1 for every
i �= j).

From the above CRT, in our bipartite scheme y can be determined uniquely in GF(MC ).
Since y < M1 ≤ MC , the solution is also unique in GF(M1). Hence, it holds that H(K |C) =
0,∀C ∈ �. (Any authorized subset of participants C ∈ � who pool their shares together can
reconstruct the secret K ).

At the same time, we assume that a coalition C ′ of malicious participants in � has gathered.
Let y′ be the unique solution for y in GF(MC ′). According to (2) and M2 > MC ′ , we obtain
M1/MC ′ > p, hence y′ + j MC ′ is smaller than M1 for 0 ≤ j < p. Since gcd(p, MC ′) = 1,
all (y′ + j MC ′) mod p are distinct for 0 ≤ j < p, and there are p of them. That is, K can be
any integer from GF(p), and the coalition C ′ obtains no information on K . Hence, it holds
that H(K |C ′) = H(K ),∀C ′ ∈ �. (Any unauthorized subset of participants C ′ ∈ � who
pool their shares together obtain no information on K ).

Therefore, according to the definition in Sect. 2.1, the proposed bipartite SS is a perfect
SSS. ��

As a consequence, based on the CRT, the SSS realizing bipartite access structures is
constructed.

3.2 Multipartite SS Based on CRT

This construction method can be extended to the general case, i.e., the SSSs realizing multi-
partite access structures.

Let an access structure � be �-partite for a partition � = {P1, . . . , Pr } of P =
{pi : 1 ≤ i ≤ n}, where |P1| = n1, . . . , |Pr | = nr and n1 + · · · + nr = n. Then the
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partition � defines a mapping � : P(P) → Z
r+. Let �0 and �1 be the corresponding

minimal access structure and maximal prohibited structure respectively, from which we can
determine �(�0) ⊂ Z

r+ and �(�1) ⊂ Z
r+.

The SSS for � has shares distribution and secret reconstruction phase as follows:

Shares Distribution To distribute n shares of a secret K among P = {pi : 1 ≤ i ≤ n}, the
dealer D does the following:

1. A set of integers
{

p, m1 < · · · < mn1 , mn1+1 < · · · < mn1+n2 , . . . , mn−nr +1 < · · ·
< mn}, where 0 ≤ K < p, is chosen subject to the following:

gcd(mi , m j ) = 1 for i �= j,

gcd(p, mi ) = 1 for all i,

M3 = min

⎛

⎝
r∏

j=1

u j∏

i=1

mi , for all (u1, . . . , ur ) ∈ �(�0)

⎞

⎠ ,

M4 = max

⎛

⎝
r∏

j=1

v j∏

i=1

mn j +i−1, for all (v1, . . . , vr ) ∈ �(�1)

⎞

⎠ ,

M3 > pM4. (3)

2. The dealer computes

y = K + ap

where a is a positive integer generated randomly subject to the condition that 0 ≤ y < M3.
3. For j = 1, . . . , r , the n j shares,

yi = y mod mi for i = 1, . . . , n j ,

are distributed randomly to participants in Pj with one to one correspondence. Hence,
the shares distribution defines a mapping f : {y1, . . . , yn} → P .

Secret Construction Assume C is a coalition of participants in � gathered to construct the
secret. Let MC = ∏

f (yi )∈C mi .

1. Given the system

y ≡ yi (mod mi )

for f (yi ) ∈ C , solve y in GF(MC ) uniquely using the CRT.
2. Compute the secret as

K = y mod p.

Theorem 2 The proposed SS realizing multipartite access structures is a perfect SSS.

Proof According to the CRT [31], in which given the following system of equations as

x = s1 mod p1;
x = s2 mod p2;

...

x = st mod pt ,
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there is one unique solution as x = ∑t
i=1

N
pi

· yi · s1 mod N , where N
pi

· yi mod pi = 1,

and N = p1 · p2 · . . . · pt , if all moduli are pairwise coprime (i.e., gcd(pi , p j ) = 1 for every
i �= j).

From the above CRT, we obtain that in our multipartite scheme y can be determined
uniquely in GF(MC ). Since y < M1 ≤ MC , the solution is also unique in GF(M1). Hence,
it holds that H(K |C) = 0,∀C ∈ � (Any authorized subset of participants C ∈ � who pool
their shares together can reconstruct the secret K ).

At the same time, we assume that a coalition C ′ of malicious participants in � has gathered.
Let y′ be the unique solution for y in GF(MC ′). According to (3) and M4 > MC ′ , we obtain
M3/MC ′ > p, hence y′ + j MC ′ is smaller than M3 for 0 ≤ j < p. Since gcd(p, MC ′) = 1,
all (y′ + j MC ′)mod p are distinct for 0 ≤ j < p, and there are p of them. That is, K can be
any integer from GF(p), and the coalition C ′ obtains no information on K . Hence, it holds
that H(K |C ′) = H(K ),∀C ′ ∈ � (Any unauthorized subset of participants C ′ ∈ � who
pool their shares together obtain no information on K ).

Therefore, according to the definition in Sect. 2.1, the proposed multipartite SS is a perfect
SSS. ��

As a consequence, based on the CRT, the SSS realizing multipartite access structures is
constructed.

Remark 1 In a verifiable SSS the validity of the shares can be verified, hence participants
are not able to cheat. Based on our scheme, we can further construct an ideal verifiable
multi-SSS by adding the existing verifiability methods where the intractability of discrete
logarithm problem is frequently used.

4 Functional Sharing Schemes Based on Our Scheme

Besides dealing with the problem of sharing a secret, a further requirement of a cryptosystem
can be that the subject function (e.g., a digital signature) should be computable without the
participants disclosing their secret shares. This is known as the functional sharing problem.
A function sharing scheme (FSS) requires distributing the function’s computation according
to the underlying SSS such that each part of the computation can be carried out by a different
participant and then the partial results can be combined to yield the functional value without
disclosing the individual secrets. Several protocols for functional sharing [3–7] have been
proposed in the literature. Nearly all existing solutions for functional sharing are based on
the Shamir SSS. In [11], Kaya et al. firstly show how sharing of threshold cryptographic
functions can be achieved using the Asmuth–Bloom SSS. They proposed two novel FSSs,
one for the RSA signature and the other for the ElGamal decryption functions, both based
on the Asmuth–Bloom SSS. Since our scheme is the extension of Asmuth–Bloom SSS, the
construction of FSSs based on our scheme, such as FSSs for the RSA signature and the
ElGamal decryption functions, may be similar to Kaya et al.’s scheme. Due to this fact, we
will not describe it in details. As a consequence, cryptography based on our SSS can extend
Kaya scheme from the threshold case to the general case.

5 Discussion of Our Scheme

In our scheme, the information rate is

log2 p

log2 max {mi , for1 ≤ i ≤ n} ,
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where the secret and the shares are chosen from finite fields GF(p) and GF(mi )

respectively.
Except the generation algorithm of the set of integers

{
p, m1 < · · · < mn1 , mn1+1 < · · ·

< mn1+n2 , . . . , mn−nr +1 < · · · < mn
}
, the performance of our scheme is the same as the

performance of Asmuth–Bloom SSS. The monotone increasing property of access structures,
the monotone decreasing property of prohibited structures and estimates of the density of
primes show that one could find primes mi (1 ≤ i ≤ n) and p to satisfy (3). To find composite
mi (1 ≤ i ≤ n) and p is still easier. A specific algorithm for generating mi (1 ≤ i ≤ n) and
p is deferred to our future work.

6 Conclusion

In this paper, we extend Asmuth–Bloom and Kaya schemes to bipartite access structures and
further present how SSSs realizing multipartite access structures can be conducted with the
CRT. Due to the fact that every access structure is multipartite, the results in this paper can
be seen as a new construction of general SS based on the CRT. Asmuth–Bloom and Kaya
schemes become the special cases of our scheme.
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