
204

A Programmable VLSI Architecture for Computing
Multiplication and Polynomial Evaluation

Modulo a Positive Integer
ERL-HUE1 LU, LEJN HARN, MEMBER, IEEE,

JAU-YIEN LEE, MEMBER, IEEE, AND
WEN-YIH HWANG

Abstract-A programmable W I architecture with regular, modular,
expansible features is designed in this correspondence for computing
A B mod N , A B + C mod N, and polynomial evaluation modulo N . The
size of the resultant circuit cm be easily expanded to improve the security
of cryptosystems without making any change to its control circuit. Further-
more, the computing procedures for all N throughout the range 0 < N <
2"-1 are identical, therefore the new circuit is well-suited for those
systems in which the value of N is alternated frequently.

I. INTRODUCTTON

Modular multiplications, exponentiations, and the polynomial
evaluations have been widely used in cryptographic systems [l].
Modular exponentiations and polynomial evaluations can be
realized by employing multiplication operations iteratively.
Several multiplier architectures have been proposed for comput-
ing multiplications over GF(2m) [2], [3] or a finite ring of integers
modulo a Fermat number [4]. However, these multipliers are not
suitable for many public-key cryptosystems due to their lack of
security [5], [6].

In 1982, Brickell [7] developed a fast modular multiplication
algorithm which multiplies in n + 10 steps. Since the delay-carry
adder is used in his algorithm, the clock rate can be greatly
improved. His algorithm, however, must take two steps, D
= A(2'B) mod (2") and D/2' = AB mod N, to compute
AB mod N, where the integer N is in the range 2"-' Q 2'N < 2".
This will make some inconvenience for those cryptosystems in
which the bit number of N is alternated frequently, such as in [8]
and [9]. In this correspondence, Brickell's multiplication al-
gorithm is modified for VLSI implementation. The proposed
circuit can be programmed for computing AB mod N, AB +
C mod N, and polynomial evaluation modulo N in one straight-
forward computing step, where N is any integer in the range of
0 < N < 2". Furthermore, the new multiplier is regular, modular,
and therefore, well-suited for VLSI implementation [lo]. In ad-
dition, the size of the multiplier can be easily expanded to
improve the security of cryptosystems without making any change
to its control circuit. To illustrate the detailed operations of the
multiplier, a timing diagram for this design is also described.

11. THE VLSI MULTIPLIER

In this section, an iterative algorithm is formulated to evaluate
E = AB mod N first. This algorithm is similar to Brickell's [7]
algorithm, but it only needs n steps for computing E = AB mod N
and can be used straightforwardly throughout the range 0 < n <

Manuscript received June 25, 1987; revised September 21, 1987. This work
was supported by the National Science Council, Republic of China under
Contract NSC 76-0404-EOO6-07.

E.-H. Lu, J.-Y. Lee, and W.-Y. Hwang are with the Department of Electrical
Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of
China.

L. Ham was with the Department of Electrical Engineering, National Cheng
Kung University, Tainan, Taiwan, Republic of China on leave from the
Computer Science Department, University of Missouri, Kansas City, MO
64110.

IEEE Log Number 8718250.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 1, FEBRUARY 1988

2". Finally, a VLSI architecture for a serial-in-serial-out multi-
plier is designed and its operation is illustrated in detail in this
section.

A. The Algorithm for Computing ABmodN

Assume E, A , B, and N are all n-bit binary positive integers
and A is restricted in the range 0 Q A < N. The binary represen-
tation of B is

B=bn-,2"-'+ ... +b,2+b,

where

b, = 0 or 1, for 0 Q i 4 n -1.

Therefore the multiplication operation E = AB mod N can be
rewritten as

E = [(Abn-,2"-l)+ +(Ab,2)+(Abo)] modN. (1)

In the beginning, we set E, = 0. An iterative procedure for
computing (1) can be formulated as follows. First compute

E,=[(E,+Abn-,)modN]2.

Then compute

E2 = [(E, + Abn-,) mod NI2

= [(En-2 + Ab,)mod N]2.

Finally

En = (En-l + Ab,) mod N
= E .

From the above procedure, it is evident that one needs to
evaluate E,+, = [(E, + Abn-,-l)mod NI2 iteratively. However,
sincewehaveOG E i = [(E , - , + A b n - ,) m o d N] 2 < 2 N andO<A
< N, the inner sum E, + Ab,-,-, is restricted to be in the range
0 < E, + Ab,-,-, < 3N. Therefore, the result of the modular ad-
dition (E, + Ab,-,-,)mod N can be divided into three different
cases as

(E, + Abnp,-,)mod N

El + Ab,,-l-l,

E, + Ab,,-,_ - 2 N,

if 0 < E, + Abn-,-, < N .

if 2N Q E, + Abn-,- , < 3N.
= E,+Ab,,p,_,-N, i f N < E , + A b n _ , - , < 2 N . (2) i
To realize the above operation in hardware, a parallel adder is

used for computing E, + Abn-,-l; then the binary two's comple-
ment method [l l , pp. 190-1931 is used to subtract Nor 2N from
the sum of E, + The subtraction operations can be
implemented concurrently by using two parallel adders. Finally,
the carriers generated from the most significant bits of these two
adders are used to choose the appropriate result in (2). The result
is then multiplied by 2 using a left-shift operation to obtain the
intermediate product E,,,. From 0 Q E, + Abn-,-, < 3N, we
know that a (n +2)-bit multiplier size is needed for the n-bit
integer computation.

0018-9200/88/0200-0204$01.00 01988 IEEE

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 1, FEBRUARY 1988 205

. , - I‘
0’

R3

cui

‘0’

I I 1
1

Fig. 1. Connection diagram for computing A B mod N . A B + C mod N , and
polynomial evaluation modulo N .

B. The VLSZ Architecture for Computing ABmodN

From the previous discussion, it is evident that a circuit to
iteratively compute E, + = [(E, + Ab, , 1) mod NI2 is needed in
the hardware realization of the multiplier. An overall VLSI
architecture for a 4-bit multiplier with the control circuit is
shown in Fig. 1. This multiplier can be used for the 2-bit integer
computation. It contains four operational cells, three lookahead
carry generator (LAC) cells, and a control circuit. The detailed
circuit for each operational cell l,! is shown in Fig. 2 while the
circuit for the LAC cell can be found in [l l , pp. 205-2151. Those
LAC’S provide carry lookahead capability for three 4-bit parallel
adders in the 4-bit multiplier. Expanding the size of this multi-
plier is analogous to the expanding of a lookahead carry adder.
In Fig. 1, P, and G, denote the group propagate and group
generate outputs of LAC,, respectively. P ,,,, GI.,: and C,,,
denote the propagate variable, generate variable, and input carry
of adder unit J in the operational cell i , respectively. It is not too
difficult to understand the functions of other connections in the
bold rectangular block when compared with the operational cell
circuit. As mentioned before, the multiplier can also be used for
computing A B + C mod N or evaluating polynomial modulo N .
The switches SW1 and SW2, shown on the left and right side of
Fig. 1, respectively, are used for function selection. They are at
point M when computing A B mod N .

In this 4-bit VLSI circuit, right after A and N shifted into their
respective registers a, and n,, and the registers e, (which are
used for storing the intermediate products E ,) are cleared, the
computation of the modular multiplication starts and will be
accomplished within four iterative steps. During each iteration,
the sum E, + Ab4- , -1 will be evaluated first by the adder 0.
Later on the differences (E , + A b 4 - r - l) - N and (E , + A b 4 - r - l)
- 2 N will be evaluated concurrently by adders 1 and 2. Since the
binary two’s complement method is used for implementing sub-
tractions, not only the complement of each bit in registers n,
should be connected to adders 1 and 2 for subtract N and 2 N
respectively, but also the input of n-, must be connected to
ZERO state (when N is loaded) and the carry inputs
are connected to ONE state. The carries from the most significant

and

’111

I 1 . -
I

dj a d j - 1

! ? = -R I I

Fig. 2. Circuit for each operation cell shown in Fig. 1

bit of these two adders, C4,1 and C4,2, are decoded to form three
control signals (< N , > N , and > 2 N) and will be used to
decide which is the correct value of (2). The result of (2) is
left-shifted to double its value and thus we have the intermediate
product Elil . To realize the shift operations, 0 must be loaded
into the e , register simultaneously. Therefore the input of e, is
connected to ZERO state. The above operations can be completed
within one clock cycle.

After iterating the same procedure four times (the last iteration
is without the left-shift operation), the control signal LD is high.
The final product E is loaded into output registers q. Then E is
serially shifted out at the same clock rate. The ?% signal is
derived from the control circuit to clear the e, registers so that
the multiplication can be executed continously.

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

206 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 1, FEBRUARY 1988

I I I I 1 1 I 1

TI -1 . .. 42 1 I F T2 -I- 1 ' I
R

m

1 1 I I I I I 1

I 1 I I 1 1 I I

1 ' I I I I I 1 . . .
I I I I I I 1 . . .
1 , I I I I I 1

I I I I 1 " b T - 1 . . .
I I I 1 I I I 1

I

I I

d- I I I I I I I ...
I I I I .

LD 1-1 I ... F TL 4 '
ER i - i F , *=*-

Fig. 3. Timing diagram.

As shown in Fig. 1, the four-stage shift registEd, serve as a
ring counter and the control signals LD and C R are periodic
pulses with a period of four clock cycles. One remarkable feature
for this kind of design is that the external control circuit is always
the same for different sizes of multiplier, i.e., the multiplier can
be expanded without changing the control circuit.

To clarify the whole operational procedure, a timing diagram is
included in Fig. 3. The timing scheme of this design is based on
two-phase nonoverlapping clocks, namely $1 and $2. In this
multiplier design, when $1 is high, the master flip-flops (FF) in
registers e, and 0, and all slave FF in dJ are enabled. Con-
versely, when $2 is high, all master FF in dJ and all slave FF in
e, and o, are enabled. Once A and N are shifted serially into
their corresponding registers, the circuit starts to compute
AB mod N . The computing procedures are listed as follows.

1) Before to: Since S T (command of start) is high, register 2
(R2) and alll_f_egisters dJ as shown in Fig. 1 are cleared.

2) At to: ST is forced to be lowat to by other systems, such as
a general-purpose computer. RDY, the output a of R2, will
switch to low after the first falling edge of $2, indicating that the
multiplier is ready for computing E = AB mod N. Data b,, b,,
b, , and bo (since B < N < 22 in general, both b, and b, equal
zero) can then be shifted from other system to register 1 (R1)
with the same rate as $1. The signals M O N , d-,, L D , and C R
are then generated by the control circuit. In the control circuit,
M1 and M 2 are denotations of monostable multivibrators 1 and
2, respectively.

3) Between ti and t ; :
4) At t , : Latch b, in R1.
5) Between t , and t , : Compute (E, + Ab,)mod N. The carries

C,,, and C4,, from LAC'S of adders 1 and 2 are encoded to form
the three control signals < N, > N , and > 2 N . Then the correct
valueOd(E,+Ab,)rnodN<N isextracted.

6) Between t, and t ,: Load the value (E, + Ab,)mod N into
the master FF of e,+, in the next stage (left shift) to form the
intermediate product E,.

7) Between t, and t,: Repeat steps 4-6 for b, and b,.
8) At t,: Latch bo.
9) Between t , and t g : Compute the final product E = (E, +
10) Between t5 and t,: Load the final product E into the

11) After t6: Clear all e, registers, then continue to execute the

signal is low to clear registers eJ.

Ab,)mod N .

master FF of output registers 9.

next modular multiplication.

There are several issues in this design which need to be
clarified. Once the final product is loaded into the output reg-
isters 0, , it can be shifted out serially. The pulse widths of MON
and L D must be within the ranges of T, + T2 < T, < T, + 2T,
and T, < c. < T, + T, (as shown in Fig. 3) in order to generate
the signals a and LD properly, otherwisethere will be some
problems. For example, either the width of C R (or L D) is too
short to clear e, registers (load data into 0, register), or too long
to work properly.

111. COMPUTING AB + CMOD N AND EVALUATING
POLYNOMIALS USING THE MULTIPLIER

Evaluating a polynomial is a fundamental operation in some
group key-sharing systems [12]-[14]. The VLSI architecture for
computing multiplication proposed in Section I1 can also be
applied to a polynomial evaluation design. By the use of Homer's
rule, polynomial evaluation can be achieved by computing AB +.
C mod N iteratively.

A. Computing AB + CmodN

The algorithm introduced in Section I1 can be modified for
computing AB + C mod N . Assume the binary representation of
C i s C = c , ~ , 2 " - 1 + ~ ~ ~ + c , 2 + c , andtherestrictionon A, B ,
and N is the same as the preceding. Then the operation F =
AB + C mod N can be rewritten as

(Ab,, + co)] mod N . (3)

When compared to (l) , we know that it is necessary to evaluate e+, = [(e +Ab,-,-, + c , - , - ,) m o d N] 2 iteratively for comput-
ing (3). The inner sum is always within the range 0 < 6 +
Ab, - I - + c,- , -, < 3 N . Therefore, we can use the previous mul-
tiplier for computing AB + C mod N , if S W 2 is switched to point
P and S W , to point M . The serial inputs O,O, c,- ,,. . ., c1, c,
are latched in register 3 (R 3) at the clock rate of $1; i.e., for each
iteration of computing C+, = [(e +Ab,-,-, + c,-,_,)mod N] 2 ,
the carry input of the parallel adder 0 at its least significant is
c,- , - , rather than ZERO state. The detailed computing proce-
dures are analogous to the steps described in Section 11.

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 1, FEBRUARY 1988 207

B. Evaluating Polynomials

Consider that

P (X) = C, X“ + C,- X m - ’ + . . . + C , X + CO mod N (4)

is a polynomial with degree m, where the coefficients of this
polynomial belong to the set {O,l;. ., N - l}, and at least one
coefficient is not zero. Using Homer’s rule and letting X = A, (4)
can be rewritten as

P (A) =(. . . ((OA + C,) A + C,-l) A + . . . + C,) A + CO mod N

+ . . . + C,) + CO mod N = A(. . . A (A(AO+ C,) + Cmp

(5)

From (5), the value P (A) can be obtained by iteratively comput-
ing (A B + C)mod N for m + 1 times. It is obvious that the VLSI
architecture for the multiplier described previously can be used to
perform polynomial evaluation if the switches SW1 and SW2
are set to point P .

Finally, there are several points to be addressed. First, since
the input opl is connected to the ZEREState, the registers 0, can
be reset to ZERO before the signal ST arrives. Thus the first
computation (AO+ Cm)mod N can be completed within n +2
clock cycles by using a (n + 2)-bit multiplier if 0 < N < 2”. The
overall computation time for evaluating a polynomial P (X) is
(n + 2)(m + 1) clock cycles. The control circuit for this operation
contains one additional counter which is not shown in Fig. 1. The
purpose of this counter is to indicate when the polynomial value
P (A) is available.

IV. CONCLUSION AND REMARKS

In this correspondence, a programmable VLSI architecture for
computing AB mod N , AB + C mod N , and polynomial evalua-
tion is proposed. The system constructed by the proposed archi-
tecture can be easily expanded. For example, by incorporating
four 64-bit chips of this type and three additional LAC chips
(such as SN74182), we can construct a 256-bit system. With this
expansible property, the security of cryptosystems can be im-
proved to the desired level by increasing the key length. The
circuit inside the bolded rectangular block, which is shown in
Fig. 1, can be fabricated in a 40-pin package. Using 2.5-pm
CMOS process technology, the chip area of a 64-bit circuit is
about 5.82X6.21 mm, and the estimated maximum clock rate is

higher than 6 MHz at 5-V power-supply voltage. If the control
circuit is also included in a single chip, a 64-pin package is
required to maintain the expansible feature. In general, it needs
n + 2 clock cycles for this new design to compute AB mod N or
A B + Cmod N , if the computing circuit is (n +2)-bit size. To
complete an evaluation of a polynomial with mth degree, this
architecture needs (n + 2)(m + 1) clock cycles. These require-
ments of clock cycles can be minimized to n and n (m + l),
respectively, if outputs of the two registers on , and d , in this
(n + 2)-bit circuit are individually connected to two pins of a
package.

ACKNOWLEDGMENT

It is,a pleasure to acknowledge Dr. T. K. Truong and Dr. I. S.
Hsu for their helpful suggestions.

REFERENCES

D. E. R. Denning, Cryptography and Data Security. Reading, MA:
Addison- Wesley, 1983.
C. S. Yeh, I. S. Reed, and T. K. Truong, “Systolic multipliers for finite
fields GF(2”),” IEEE Trans. Comput., vol. C-33, pp. 357-360, Apr.
1984.
P. A. Scott, S. E. Tavares, and L. E. Peppard, “A fast VLSI multiplier
for GF(2”),” IEEE J. Selected Areas Commun., vol. SAC-4, pp. 62-66.
Jan. 1986.
J. J. Chang. T. K. Truong, H. M. Shao, I. S. Reed, and I. S. Hsu, “The
VLSI design of a single chip for the multiplication of integers modulo a
Fermat number,” IEEE Trans. Acoust. Speech, Signal Processing, vol.
ASSP-33, pp. 1599-1602, Dec. 1985.
S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance.” IEEE Trans.
Inform. Theory, vol. IT-24, pp. 106-110, Jan. 1978.
D. Coppersmith, “Fast evaluation of logarithms in fields of characteris-
tic two,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 587-594. July
1984.
E. F. Brickell, “A fast modular multiplication algorithm with application
to two key cryptography,” Advances in Cvptologv, Proceedings of
Crypto’R2.
C. Asmuth and J. Bloom, “A modular approach to key safeguarding,”
IEEE Trans. Inform. Theory, vol. IT-29, pp. 208-210, Mar. 1983.
A. Shamir, “Embedding cryptographic trapdoods in arbitrary knapsack
systems,” Inform. Process. Lett., vol. 17, pp. 77-79, Aug. 1983.
M. J. Foster and H. T. Kung, “The design of special-purpose VLSI
chips,’’ Computer, vol. 13, pp. 26-40, Jan. 1980.
H. Taub, Digital Circuits and Microprocessors. New York: McCraw-
Hill, 1982.
A. Shamir, “How to share a secret,” Commun. A C M , vol. 22. pp.
612-613, Nov. 1979. I

F. Luccio and S. Mazzone, “A cryptosystem for multiple communica-
tion,” Inform. Process. Lett.. vol. 10, pp. 180-183, July 1980.
D. E. Denning and F. B. Schneider, “Master keys for group sharing,’’
Inform. Process. Lett., vol. 12, pp. 23-25, Feb. 1981.

New York: Plenum, 1983, pp. 51-60.

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

