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A Programmable VLSI Architecture for Computing 
Multiplication and Polynomial Evaluation 

Modulo a Positive Integer 
ERL-HUE1 LU, LEJN HARN, MEMBER, IEEE, 

JAU-YIEN LEE, MEMBER, IEEE, AND 
WEN-YIH HWANG 

Abstract-A programmable W I  architecture with regular, modular, 
expansible features is designed in this correspondence for computing 
A B  mod N ,  A B  + C mod N, and polynomial evaluation modulo N .  The 
size of the resultant circuit cm be easily expanded to improve the security 
of cryptosystems without making any change to its control circuit. Further- 
more, the computing procedures for all N throughout the range 0 < N < 
2"-1 are identical, therefore the new circuit is well-suited for those 
systems in which the value of N is alternated frequently. 

I. INTRODUCTTON 

Modular multiplications, exponentiations, and the polynomial 
evaluations have been widely used in cryptographic systems [l]. 
Modular exponentiations and polynomial evaluations can be 
realized by employing multiplication operations iteratively. 
Several multiplier architectures have been proposed for comput- 
ing multiplications over GF(2m) [2], [3] or a finite ring of integers 
modulo a Fermat number [4]. However, these multipliers are not 
suitable for many public-key cryptosystems due to their lack of 
security [5], [6]. 

In 1982, Brickell [7] developed a fast modular multiplication 
algorithm which multiplies in n + 10 steps. Since the delay-carry 
adder is used in his algorithm, the clock rate can be greatly 
improved. His algorithm, however, must take two steps, D 
= A(2'B) mod (2") and D/2' = AB mod N, to compute 
AB mod N, where the integer N is in the range 2"-' Q 2'N < 2". 
This will make some inconvenience for those cryptosystems in 
which the bit number of N is alternated frequently, such as in [8] 
and [9]. In this correspondence, Brickell's multiplication al- 
gorithm is modified for VLSI implementation. The proposed 
circuit can be programmed for computing AB mod N, AB + 
C mod N, and polynomial evaluation modulo N in one straight- 
forward computing step, where N is any integer in the range of 
0 < N < 2". Furthermore, the new multiplier is regular, modular, 
and therefore, well-suited for VLSI implementation [lo]. In ad- 
dition, the size of the multiplier can be easily expanded to 
improve the security of cryptosystems without making any change 
to its control circuit. To illustrate the detailed operations of the 
multiplier, a timing diagram for this design is also described. 

11. THE VLSI MULTIPLIER 

In this section, an iterative algorithm is formulated to evaluate 
E = AB mod N first. This algorithm is similar to Brickell's [7] 
algorithm, but it only needs n steps for computing E = AB mod N 
and can be used straightforwardly throughout the range 0 < n < 
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2". Finally, a VLSI architecture for a serial-in-serial-out multi- 
plier is designed and its operation is illustrated in detail in this 
section. 

A. The Algorithm for Computing ABmodN 

Assume E, A ,  B, and N are all n-bit binary positive integers 
and A is restricted in the range 0 Q A < N. The binary represen- 
tation of B is 

B=bn-,2"-'+ ... +b,2+b, 

where 

b, = 0 or 1, for 0 Q i 4 n -1. 

Therefore the multiplication operation E = AB mod N can be 
rewritten as 

E =  [(Abn-,2"-l)+ +(Ab,2)+(Abo)] modN. (1) 

In the beginning, we set E, = 0. An iterative procedure for 
computing (1) can be formulated as follows. First compute 

E,=[(E,+Abn-,)modN]2. 

Then compute 

E2 = [(E, + Abn-,) mod NI2 

= [( En-2 + Ab,)mod N]2. 

Finally 

En = ( En-l + Ab,) mod N 
= E .  

From the above procedure, it is evident that one needs to 
evaluate E,+, = [(E, + Abn-,-l)mod NI2 iteratively. However, 
sincewehaveOG E i = [ ( E , - , + A b n - , ) m o d N ] 2 < 2 N  andO<A 
< N, the inner sum E, + Ab,-,-, is restricted to be in the range 
0 < E, + Ab,-,-, < 3N. Therefore, the result of the modular ad- 
dition (E, + Ab,-,-,)mod N can be divided into three different 
cases as 

(E, + Abnp,-,)mod N 

El + Ab,,-l-l, 

E, + Ab,,-,_ - 2 N, 

if 0 < E, + Abn-,-, < N .  

if 2N Q E, + Abn-,- , < 3N. 
= E,+Ab,,p,_,-N, i f N < E , + A b n _ , - , < 2 N .  (2) i 
To realize the above operation in hardware, a parallel adder is 

used for computing E, + Abn-,-l; then the binary two's comple- 
ment method [ l l ,  pp. 190-1931 is used to subtract Nor 2N from 
the sum of E, + The subtraction operations can be 
implemented concurrently by using two parallel adders. Finally, 
the carriers generated from the most significant bits of these two 
adders are used to choose the appropriate result in (2). The result 
is then multiplied by 2 using a left-shift operation to obtain the 
intermediate product E,,,. From 0 Q E, + Abn-,-, < 3N, we 
know that a ( n  +2)-bit multiplier size is needed for the n-bit 
integer computation. 
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Fig. 1. Connection diagram for computing A B  mod N .  A B  + C mod N ,  and 
polynomial evaluation modulo N .  

B. The VLSZ Architecture for Computing ABmodN 

From the previous discussion, it is evident that a circuit to 
iteratively compute E, + = [( E, + Ab, , 1 )  mod NI2 is needed in 
the hardware realization of the multiplier. An overall VLSI 
architecture for a 4-bit multiplier with the control circuit is 
shown in Fig. 1. This multiplier can be used for the 2-bit integer 
computation. It contains four operational cells, three lookahead 
carry generator (LAC) cells, and a control circuit. The detailed 
circuit for each operational cell l,! is shown in Fig. 2 while the 
circuit for the LAC cell can be found in [ l l ,  pp. 205-2151. Those 
LAC’S provide carry lookahead capability for three 4-bit parallel 
adders in the 4-bit multiplier. Expanding the size of this multi- 
plier is analogous to the expanding of a lookahead carry adder. 
In Fig. 1, P, and G, denote the group propagate and group 
generate outputs of LAC,, respectively. P ,,,, GI.,: and C,,, 
denote the propagate variable, generate variable, and input carry 
of adder unit J in the operational cell i ,  respectively. It is not too 
difficult to understand the functions of other connections in the 
bold rectangular block when compared with the operational cell 
circuit. As mentioned before, the multiplier can also be used for 
computing A B  + C mod N or evaluating polynomial modulo N .  
The switches SW1 and SW2,  shown on the left and right side of 
Fig. 1, respectively, are used for function selection. They are at 
point M when computing A B  mod N .  

In this 4-bit VLSI circuit, right after A and N shifted into their 
respective registers a, and n,, and the registers e, (which are 
used for storing the intermediate products E , )  are cleared, the 
computation of the modular multiplication starts and will be 
accomplished within four iterative steps. During each iteration, 
the sum E, + Ab4- , -1  will be evaluated first by the adder 0. 
Later on the differences ( E ,  + A b 4 - r - l ) -  N and ( E ,  + A b 4 - r - l )  
- 2 N will be evaluated concurrently by adders 1 and 2. Since the 
binary two’s complement method is used for implementing sub- 
tractions, not only the complement of each bit in registers n, 
should be connected to adders 1 and 2 for subtract N and 2 N  
respectively, but also the input of n-, must be connected to 
ZERO state (when N is loaded) and the carry inputs 
are connected to ONE state. The carries from the most significant 
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Fig. 2. Circuit for each operation cell shown in Fig. 1 

bit of these two adders, C4,1 and C4,2, are decoded to form three 
control signals ( < N ,  > N ,  and > 2 N )  and will be used to 
decide which is the correct value of (2). The result of ( 2 )  is 
left-shifted to double its value and thus we have the intermediate 
product Elil .  To realize the shift operations, 0 must be loaded 
into the e ,  register simultaneously. Therefore the input of e, is 
connected to ZERO state. The above operations can be completed 
within one clock cycle. 

After iterating the same procedure four times (the last iteration 
is without the left-shift operation), the control signal LD is high. 
The final product E is loaded into output registers q. Then E is 
serially shifted out at the same clock rate. The ?% signal is 
derived from the control circuit to clear the e, registers so that 
the multiplication can be executed continously. 
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Fig. 3. Timing diagram. 

As shown in Fig. 1,  the four-stage shift registEd, serve as a 
ring counter and the control signals LD and C R  are periodic 
pulses with a period of four clock cycles. One remarkable feature 
for this kind of design is that the external control circuit is always 
the same for different sizes of multiplier, i.e., the multiplier can 
be expanded without changing the control circuit. 

To clarify the whole operational procedure, a timing diagram is 
included in Fig. 3. The timing scheme of this design is based on 
two-phase nonoverlapping clocks, namely $1 and $2.  In this 
multiplier design, when $1 is high, the master flip-flops (FF) in 
registers e, and 0, and all slave FF in dJ are enabled. Con- 
versely, when $2 is high, all master FF in dJ and all slave FF in 
e, and o, are enabled. Once A and N are shifted serially into 
their corresponding registers, the circuit starts to compute 
AB mod N .  The computing procedures are listed as follows. 

1)  Before to: Since S T  (command of start) is high, register 2 
(R2) and alll_f_egisters dJ as shown in Fig. 1 are cleared. 

2)  At to: ST is forced to be lowat to by other systems, such as 
a general-purpose computer. RDY,  the output a of R2, will 
switch to low after the first falling edge of $2, indicating that the 
multiplier is ready for computing E = AB mod N. Data b,, b,, 
b, ,  and bo (since B < N < 22 in general, both b, and b, equal 
zero) can then be shifted from other system to register 1 (R1) 
with the same rate as $1. The signals M O N ,  d-,, L D ,  and C R  
are then generated by the control circuit. In the control circuit, 
M1 and M 2  are denotations of monostable multivibrators 1 and 
2, respectively. 

3) Between ti and t ; :  
4 )  At t , :  Latch b, in R1. 
5 )  Between t ,  and t , :  Compute (E, + Ab,)mod N. The carries 

C,,, and C4,, from LAC'S of adders 1 and 2 are encoded to form 
the three control signals < N, > N ,  and > 2 N .  Then the correct 
valueOd(E,+Ab,)rnodN<N isextracted. 

6) Between t, and t ,: Load the value (E, + Ab,)mod N into 
the master FF of e,+, in the next stage (left shift) to form the 
intermediate product E,. 

7) Between t, and t,: Repeat steps 4-6 for b, and b,. 
8) At t,: Latch bo. 
9) Between t ,  and t g :  Compute the final product E = ( E, + 
10) Between t5 and t,: Load the final product E into the 

11) After t6: Clear all e, registers, then continue to execute the 

signal is low to clear registers eJ. 

Ab,)mod N .  

master FF of output registers 9. 

next modular multiplication. 

There are several issues in this design which need to be 
clarified. Once the final product is loaded into the output reg- 
isters 0, , it can be shifted out serially. The pulse widths of MON 
and L D  must be within the ranges of T, + T2 < T, < T, + 2T, 
and T, < c. < T, + T, (as shown in Fig. 3) in order to generate 
the signals a and LD properly, otherwisethere will be some 
problems. For example, either the width of C R  (or L D )  is too 
short to clear e, registers (load data into 0, register), or too long 
to work properly. 

111. COMPUTING AB + CMOD N AND EVALUATING 
POLYNOMIALS USING THE MULTIPLIER 

Evaluating a polynomial is a fundamental operation in some 
group key-sharing systems [12]-[14]. The VLSI architecture for 
computing multiplication proposed in Section I1 can also be 
applied to a polynomial evaluation design. By the use of Homer's 
rule, polynomial evaluation can be achieved by computing AB +. 
C mod N iteratively. 

A. Computing AB + CmodN 

The algorithm introduced in Section I1 can be modified for 
computing AB + C mod N .  Assume the binary representation of 
C i s C = c , ~ , 2 " - 1 + ~ ~ ~ + c , 2 + c ,  andtherestrictionon A, B ,  
and N is the same as the preceding. Then the operation F =  
AB + C mod N can be rewritten as 

(Ab,, + co)] mod N .  ( 3 )  

When compared to ( l ) ,  we know that it is necessary to evaluate e+, = [(e +Ab,-,-, + c , - , - , ) m o d N ] 2  iteratively for comput- 
ing (3). The inner sum is always within the range 0 < 6 + 
Ab, - I - + c,- ,  -, < 3 N .  Therefore, we can use the previous mul- 
tiplier for computing AB + C mod N ,  if S W 2  is switched to point 
P and S W ,  to point M .  The serial inputs O,O, c,- ,,. . ., c1, c, 
are latched in register 3 ( R 3 )  at the clock rate of $1; i.e., for each 
iteration of computing C+, = [(e +Ab,-,-, + c,-,_,)mod N ] 2 ,  
the carry input of the parallel adder 0 at its least significant is 
c,- , - ,  rather than ZERO state. The detailed computing proce- 
dures are analogous to the steps described in Section 11. 
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B. Evaluating Polynomials 

Consider that 

P (  X )  = C, X“ + C,- X m - ’  + . . . + C , X  + CO mod N (4) 

is a polynomial with degree m, where the coefficients of this 
polynomial belong to the set {O,l;. ., N - l}, and at least one 
coefficient is not zero. Using Homer’s rule and letting X =  A, (4) 
can be rewritten as 

P (  A )  =( . . . ( (OA + C,) A + C,-l) A + . . . + C,) A + CO mod N 

+ . . . + C,) + CO mod N = A( . . . A (  A( AO+ C,) + Cmp 

( 5) 

From (5), the value P ( A )  can be obtained by iteratively comput- 
ing ( A B  + C)mod N for m + 1 times. It is obvious that the VLSI 
architecture for the multiplier described previously can be used to 
perform polynomial evaluation if the switches SW1 and SW2 
are set to point P .  

Finally, there are several points to be addressed. First, since 
the input opl is connected to the ZEREState, the registers 0, can 
be reset to ZERO before the signal ST arrives. Thus the first 
computation (AO+ Cm)mod N can be completed within n +2 
clock cycles by using a ( n  + 2)-bit multiplier if 0 < N < 2”. The 
overall computation time for evaluating a polynomial P ( X )  is 
( n  + 2)( m + 1) clock cycles. The control circuit for this operation 
contains one additional counter which is not shown in Fig. 1. The 
purpose of this counter is to indicate when the polynomial value 
P ( A )  is available. 

IV. CONCLUSION AND REMARKS 

In this correspondence, a programmable VLSI architecture for 
computing AB mod N ,  AB + C mod N ,  and polynomial evalua- 
tion is proposed. The system constructed by the proposed archi- 
tecture can be easily expanded. For example, by incorporating 
four 64-bit chips of this type and three additional LAC chips 
(such as SN74182), we can construct a 256-bit system. With this 
expansible property, the security of cryptosystems can be im- 
proved to the desired level by increasing the key length. The 
circuit inside the bolded rectangular block, which is shown in 
Fig. 1, can be fabricated in a 40-pin package. Using 2.5-pm 
CMOS process technology, the chip area of a 64-bit circuit is 
about 5.82X6.21 mm, and the estimated maximum clock rate is 

higher than 6 MHz at 5-V power-supply voltage. If the control 
circuit is also included in a single chip, a 64-pin package is 
required to maintain the expansible feature. In general, it needs 
n + 2 clock cycles for this new design to compute AB mod N or 
A B  + Cmod N ,  if the computing circuit is ( n  +2)-bit size. To 
complete an evaluation of a polynomial with mth degree, this 
architecture needs ( n  + 2)( m + 1) clock cycles. These require- 
ments of clock cycles can be minimized to n and n (  m + l), 
respectively, if outputs of the two registers on , and d ,  in this 
( n  + 2)-bit circuit are individually connected to two pins of a 
package. 
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