
This typical example shows that the analysis method is very 
efficient and considerably simpler than other known methods. 
Although it is presently restricted to stray-insensitive SC net- 
works, it can easily be extended,’ as will be described in a 
forthcoming comprehensive publication. There it will be 
shown that this method can readily be used for general SC 
networks, including those with unity-gain buffer amplifiers. 
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PU BLIC-KEY EN CRY PTlON ALGO RlTH M 
INCORPORATING ERROR DETECTION 

Indexing terms: Information theory, Codes and coding, Public- 
key cryptography, Error-detection codes, Quadratic residue, 
Authentication 

Owing to their mathematical properties, quadratic residues 
have been used successfully in designing a number of crypto- 
graphic applications, such as oblivious transfer protocol and 
coin flipping protocol. In the letter we propose an encryption 
scheme based on quadratic residue theory. In particular, we 
incorporate the encrypting procedure and error-detecting 
code into a complete communication system. 

Introduction: In 1976, Diffie and Hellman’ introduced the 
concept of public-key cryptography, which provides a proper 
solution to the problem of key distribution. Since then many 
implementations of public-key cryptography have been pro- 
posed. For example, the Rivest-Shamir-Adelman (RSA) 
scheme2 depends on the difficulty of factoring large integers, 
and Elgamal’s scheme3 depends on the difficulty of computing 
discrete logarithms. 

In this letter we propose a public-key encryption/decryption 
scheme that incorporates into it an error-detecting code. The 
public/private keys are based on quadratic residue theory. The 
oblivious transfer protocol proposed by Blum4 is one applica- 
tion based on the same theory. The security of our system is 
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based on the difficulty of factoring large integers, as in the 
RSA scheme. 

Diffe and Hellman’ observed that if an error is propagated 
by an encryption/decryption algorithm, then applying error- 
detecting codes before encryption and after decryption (as 
shown in Fig. 1) provides a way to achieve message authen- 
ticity (to the extent of detecting active tampering). The reason 
for this is that any altering of the ciphertext will be detected 
by the error-detecting device. 

e r r o r -  m e s a g e  
declPher detecting 

decoder 

1E 
Fig. 1 

Since we use the block cipher for encryption, the error does 
propagate. One special feature of our proposed encryption 
scheme is that we incorporate error detection within our 
decryption technique. The result is that our scheme provides 
not only data secrecy but also, as a bonus, error detection and 
message authenticity. 

Quadrat ic  residues: We now summarise those facts about 
quadratic residue theory (cf. Denning’s summary (Reference 6, 
pp. 11 1-1 17)) needed to understand our encryption algorithm 
presented later. Those facts are as follows: 

(1) Definition: A number a is a quadratic residue modulo n iff 
(a)  a and n are relatively prime (gcd (a, n) = l), and (b)  the 
equation x2 mod n = a mod n has a solution. 

(2) Nota t ion:  We define Q R ,  to be the set of all integers 
between 1 and n - 1 that are quadratic residues modulo n, 
and N Q R ,  those that are not, called quadratic nonresidues. 

(3) Since ( n  - a)* mod n = a2 mod n for a = 1, 2,  . . . , [((n - 1)/ 
2)1, Q R ,  can be found by evaluating x2 mod n for only x = 1, 
2, . . . , r((n - 1)/2)1. If n is a prime, these [((n - 1)/2)1 values 
will all be distinct. If n > 2 and prime, then Q R ,  contains 
exactly half of these n - 1 elements. 

(4) For prime n = p > 2, and 0 < a < p ,  a ( p - 1 ) 1 2  mod p = 1 or 
p - 1, depending on whether a E Q R ,  or a E N Q R , ,  respec- 
tively. 

(5) If n = p*q,  where p and q are large primes, then a E QR,  iff 
( a  E QR,)  and ( a  E QR,) .  If a E Q R , ,  then a has exactly 2 or 4 
square roots. Since square roots come in additive inverse 
pairs, half of these roots are even and half odd. We call the 
even root(s) the primary square root(s) of a .  

(6) In this letter we make the further assumption that, for 
n = p*q, p and q are large primes such that (p + 1) and (q + 1) 
are each evenly divisible by 4. This assumption considerably 
simplifies the calculations required for finding square roots 
(see Reference 6, p. 116). 

The reason why quadratic residues, and primary square roots 
of quadratic residues, play a significant role in our secrecy 
scheme is threefold : 

(i) Quadratic residues modulo n within the integer interval 
[l,  n - 13 fall randomly in that interval.’ 

(ii) Primary square roots of a quadratic residue modulo n are 
independent of each other. 

(iii) Given a quadratic residue a modulo n, where n = p*q, 
with p and q large prime numbers, it is computationally in- 
feasible to calculate the square roots of a without knowing 
p and q. 

Encryption scheme: The following cryptosystem, based on the 
theory of quadratic residues, provides secrecy as well as 
authentication of the message itself (freedom from active 
tampering). It also incorporates error detection within the 
decryption algorithm. 

Each user U of the system selects two very large (of the 
order of 350 bits in length) prime numbers p o  and qo, with the 
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added property that p,, + 1 and qu + 1 are each divisible by 4, 
and then calculates nu = pu*qu. The user then makes nu 
public while keeping pv and qu secret. 

Any message M to be sent is divided into a sequence of 
message blocks of uniform length L, (MI, M,, . . . , M,J, each of 
which can be considered as a large integer in binary form. 
Individual blocks are then encrypted. We henceforth refer to 
individual message blocks as M. 

We need a method for encrypting these individual message 
blocks M. Two earlier papers in particular5.* directed our 
thinking about this problem. In Reference 5 Diffe and 
Hellman recommended that error-detection encoding and 
decoding precede and follow, respectively, the encipherment 
and decipherment of a message, as shown in Fig. 1 (see Refer- 
ence 6, p. 137). 

Our method instead incorporates the encoding and decod- 
ing into a system, and in particular requires the use of error- 
detection decoding in the actual decipherment of the message. 

In Reference 8 Koyama presented a method for encrypting 
messages, which preserves secrecy of the message and requires 
that the receiver use the quadratic formula to find the roots of 
a quadratic equation. He appended redundant information to 
the message, so that this redundant information can be used 
to select the one of the four solutions to the quadratic equa- 
tion which includes the plaintext. Instead of using redundant 
information, we use parity bits already necessary for error- 
detection encoding and decoding, and one special parity bit of 
our own, to enable us to select the one square root of the 
ciphertext that contains the plaintext. 

The algorithm for enciphering a block of plaintext M is as 
follows : 

(1) Find the public value nB of the receiver B, to whom the 
message is to be sent. 

(2) Break the message into a sequence of blocks, all of the 
same length L, such that the corresponding parity bit string 
required for a block of length L, being of length t (to produce 
an ( L  + t, L) linear block code for error-detection purposes’) 
is such that (L + (t + 1)) < log, nB.  

(3) For each message block M, (a) append to M a string P of 
parity bits and the single bit ‘U, as follows to produce M’ = 
P @ M @ ‘0’ (we use the symbol ‘a’ for concatenation of 
strings). M‘, considered as an integer, is less than nB, because 
of the restriction imposed in (2) above on L; (b) calculate the 
corresponding ciphertext C as C = ( M ’ ) ,  mod nB, and trans- 
mit C to user B. 

Note that, for this scheme, user A needs basically perform 
only one simple operation other than those already required 
for communication protocol, including error detection. 

User B then deciphers a message block M from a ciphertext 
C, as follows: 

(1) Find the four (or two) square roots of C. 

(2) Eliminate the odd square roots (root), thus obtaining the 
primary root(s). 

(3) If necessary, select M’ from the remaining two primary 
roots. 

(4) Remove ‘0’ and P from M’ to obtain the message block M. 

Steps (2) and (4) are automatic. Steps (1) and (3) require calcu- 
lations, which will now be described. Step (3) uses decoding, 
which would be required in any case. Hence, step (1) is where 
the time complexity of this deciphering algorithm lies. 

More specifically, user B, knowing the two factors p B  and qB 
of nB can calculate the four square roots of C in polynomial 
time. The method involves finding two inverses, one modulo 
p B  and one modulo qB,  and then using the Chinese remainder 
theorem twice. These square roots will be of the form r , ,  
nB - rl, r ,  and nB - r, .  Since nB is odd, two of these will be 
odd and two even, so we reject the odd ones, and call the 
remaining even ones er , and er2. 

The task now is to determine which of er, and er, is M’ (if 
there were only two roots, instead of four, we would now have 
found MI). Suppose that er, = P, @? M, @? ‘0’ and er, = 
P, @ M, @ ‘0’. Replace er, and er, by s1 and s2, respectively, 

where s, = P, @ M, and s, = P ,  @ M,. Apply the decoding 
parity-check matrix to si and s, to detect any errors in trans- 
mission. Whichever one is actually P @ M will pass, while the 
other will fail with high probability, since it is highly unlikely 
that a random string s would have its first t bits to be the 
correct parity bits for the remaining L bits. This probability of 
failure is 1 - (1/23. This can be made as close to 1 as is 
desired by choosing the length of the parity bit string to be 
large. Note that the decoding of s, and s2 not only checks for 
errors in transmission, but at the same time enables user B to 
select the correct square root M‘. Hence we have merged the 
two operations of decoding and decryption (shown in Fig. 1) 
into a single operation. 

If the ciphertext C had no error in transmission, M would 
be recovered with high probability. If there were an error in 
transmission, then both s, and s2 would be rejected with high 
probability, since this error is propagated by the deciphering 
process, and user B would request user A to retransmit the 
message. Also, if an enemy were to attempt to actively tamper 
with the ciphertext C, then again the tampering error would 
be propagated in the received ciphertext C‘, leading to two 
values si and s;, which would both be rejected with high 
probability. So, in both the case of active tampering, and of 
‘natural’ tampering, the resulting ciphertext would be rejected, 
and user A would be requested to retransmit the message. 
User B would not know which case produced the error, but 
would detect it in either case with high probability. 

Hence, this scheme provides secrecy (no user besides user B 
knows p B  and qB, which are necessary to calculate the four 
square roots of C in nonexponential time; hence no other user 
could recover M) and as a bonus, message authentication (any 
other user who attempted to actively tamper with the message 
would cause user B to request retransmission of the message 
by user A). It does not authenticate the sender of the message, 
however, and hence does not either provide a signature for the 
message. 

Conclusion: In this letter we have presented a new crypto- 
graphic scheme. This encryption scheme assures secrecy of a 
message and message authenticity, while incorporating coding 
and cryptography into a single communication system. This 
scheme is based on the exponential time complexity of factor- 
ing a large integer into two large, prime factors, and on quad- 
ratic residue theory in number theory. The overall complexity 
is equivalent to the familiar Rivest-Shamir-Adelman (RSA) 
scheme., In the RSA scheme, the computational load is 
equally divided between the sender and receiver. In our 
scheme, the sender has a very light load, while the receiver 
bears a heavy computational load. 

14th November 1988 L. HARN 
T. KIESLER 
Computer Science Program 
University of Missouri-Kansas City 
Kansas City, MO 64110, USA 
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