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Linearly Shift Knapsack Public-Key Cryptosystem 

Abstract-In this paper, we propose two algorithms to improve the 
Merkle-Hellman knapsack public-key cryptosystem. First, we propose 
an approach to transform a superincreasing sequence to a “high den- 
sity’’ knapsack sequence. The algorithm is easy to implement and elim- 
inates the redundancy of many knapsack cryptosystems. Second, a lin- 
early shift method is used to improve the security of the knapsack 
public-key cryptosystem. We show that several knapsacks (e.g., the so- 
called ‘‘useless” knapsack), which cannot be generated by using the 
Merkle-Hellman scheme, can be generated by the linearly shift method. 
Thus, Shamir’s attack to the original knapsack, as well as the low den- 
sity attack to the iterated knapsack, cannot apply to our system suc- 
cessfully. It is interesting to note that the concept of the requirement 
of being one-to-one in practical enciphering keys is not necessary for 
our system. 

I. INTRODUCTION 
IFFIE and Hellman first proposed the idea of a pub- D lic-key distribution system in 1976 [ I]. However, the 

first implemented public-key cryptosystems were pub- 
lished by Rivest et al .  [2] and Merkle et al .  (31. The se- 
curity of both systems is based on the difficulty of factor- 
ing a large number and the complexity of knapsack 
problem, respectively. The first cryptanalysis to the basic 
Merkle-Hellman cryptosystem was published by Shamir 
[4]. Following his attack, some successful attacks to the 
iterated knapsack and the low density knapsack were pro- 
posed by Adleman [5] and Lagarias et a l .  [6]. Desmedt 
et al .  [7] analyzed why these knapsack cryptosystems can 
be broken successfully. They showed that there exist some 
decodable enciphering keys but they cannot be obtained 
from Merkle-Hellman [3] or Graham-Shamir schemes 
[8]. Since these unobtainable keys are the worst cases in 
the knapsack problem, the exclusion of these keys from a 
cryptographic knapsack system explains the reason of 
success of several attacks on the knapsack algorithms. In 
[9] and [ 101, several general knapsack public-key cryp- 
tosystems were proposed to further reduce some of use- 
less enciphering keys. They replaced the “easy” deci- 
phering keys by random deciphering keys using linear 
algebra. However, many “useless” keys [7] still cannot 
be obtained by their schemes due to the constraint of mod- 
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ular multiplication. Besides, the data expansion is very 
large and the speed of decryption will be significantly 
slowed. Moreover, since they belong to the case of low 
density sequences, the low density attack can be applied 
to these systems. Other knapsack-type public-key cryp- 
tosystems have also been proposed. For example, Good- 
man et al .  [12] proposed a scheme based on the modular 
transformation and Chinese Remainder Theorem, but it is 
recently shown that the system can be breakable [17]. 
Chor er a l .  [ 111 proposed a knapsack-type cryptosystem 
based on arithmetic in finite fields. However, the major 
problems for this scheme are the difficulty in the key gen- 
eration and the slowness in the speed of decryption. 

In this paper, a new knapsack-type public-key crypto- 
system is proposed. The key generation is easy and can- 
not be obtained by applying one or more modular multi- 
plications on any other sequence. It has been shown that 
the enciphering keys obtained from this algorithm have 
very high probability of falling into the category of the 
worst knapsack with NP-completeness. Therefore, 
Shamir’s attack and the low density attack cannot be ap- 
plied to our system. 

This paper is organized as follows. In Section I1 we 
review the knapsack cryptosystem and the polynomial- 
time attack. Section I11 presents an algorithm to obtain the 
high density knapsack cryptosystem. A simple algorithm 
to improve the security of knapsack public-key crypto- 
system is described in Section IV. In Section V ,  we show 
that even when the enciphering keys of the proposed sys- 
tem is not a one-to-one system, it can be used in cryptog- 
raphy. Conclusions are given in Section VI. 

11. MERKLE-HELLMAN CRYPTOSYSTEM A N D  ITS 
POLYNOMIAL-TIME ATTACK 

In the Merkle-Hellman cryptosystem, the receiver uk 
first chooses a superincreasing sequence B = ( b , ,  b,, * . . , 
b,,)  (i.e.,  6, > Cl 1 I b,) ,  and then transfers B into a pseu- 
dorandom sequence A = ( a  I ,  a?, . . . a , , )  by the follow- 
ing modulo transformation: 

( l a )  a, = b, * LV mod M 

with 

and 
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Finally, uL publishes the numbers of ( a l ,  a 2 ,  * , a r i )  as Since b, > 
the enciphering keys. On the transmitter side, the enci- 
phering operation for a binary message ( x I ,  x2,  . . , x,) 

I bJ + U ,  we have 

1 - 1  1 - 1  1 - 1  

b , ! = b , - ~ , Z  C ~ , + V - C , Z  C b >  C b ;  is given by J =  I J = I  J - J = I  
n 

s = c x,a,. (2)  
, = I  

Now, the transmitter sends S to the receiver through the 
insecure channel. Since A is public and S can be inter- 
cepted, an eavesdropper has to find a subset of A which 
sums up to S in order to obtain the message. This problem 
is known to be NP-complete. However, the intended re- 
ceiver with the knowledge of B can obtain the message 
( X I ,  x2, * 

S ”  = S * w-I mod M 

* , x , ~ )  by computing 

r f  

= C b,x, mod M, ( 3 )  
, = I  

where w-’ * w = 1 mod M. It can easily be shown that 
the x,  can be found with at most n subtractions [3]. 

There are two major disadvantages in the Merkle-Hell- 
man knapsack cryptosystem. First, the density is less than 
1/2 [3] which is unfavorable to the transition efficiency 
and the size of the public file. This results from the su- 
perincreasing quality of B which causes a, to be large and 
the corresponding density to be low [density = n/log2 
max ( a , ) ] .  Second, because the deciphering keys are easy 
sequences, they are breakable [13], [5]-[7]. It has been 
proved [7] that there exist infinite pairs ( U ,  M’) which can 
transfer A to another superincreasing sequence D .  In or- 
der to find the pairs of ( v ,  M’), conditions (la),  ( lb),  and 
( I C )  can be reformulated to linear inequalities. Using the 
linear programming method proposed by Lenstra [ 141, it 
can be solved in polynomial time. Despite these two 
drawbacks, the Merkle-Hellman system has one major 
advantage. That is, the speed of enciphering and deci- 
phering operations is faster than other well-known public 
keys (e.g., RSA). In the next two sections, we will show 
how to eliminate these two drawbacks in the Merkle- 
Hellman scheme. 

111. HIGH DENSITY KNAPSACK ALGORITHM 
In order to describe how to choose a superincreasing 

sequence which can transform to a “high density” knap- 
sack sequence, let us prove the following theorem. 

Theorem 1: If a superincreasing sequence b, and an in- 
teger number U satisfy 

I -  I 

b, > C bJ + U ,  i = 1 , 2 ,  * - e  , n, 
J =  I 

I f  

( 4 )  
and M > c 6, 

I = I  

and for an integer c, such that 0 I c, I U ,  then b,’ = b, 
- c, still forms a superincreasing sequence with M > 
Cy= I b,‘ . 

Proof: Since 6,‘ = b, - c, and 0 I c, I U ,  we have 
I -  I 1 - 1  I -  I 

and M > Cy=, b, 2 Cy=, b,‘. Q.E.D. 
Although c, is limited in { 0 I c, I U } ,  through the 

transformation, ( * w  mod M ), it can be arbitrary chosen 
and distributed in [ 0, vw] to reduce the enciphering keys 
for high density sequences. Now, let us describe the pro- 
cedures for generating this high density sequence. 

Step 1: Randomly choose a superincreasing sequence 
B = ( b l ,  b,, * * * , b,i) and two integers w, M satisfying 
GCD(w, M )  = 1 and (4), where v = LM/wJ (where 
Lx J is a floor function, representing the largest integer 

value smaller than x ) .  
Step 2: Calculate the original enciphering keys a, = b, 

Step 3: Compute and public the high density encipher- 
(6a)  

Step 4: Calculate c, = La , /w  J , then 0 I c, I U ,  and 

It can be easily proved that a,’ = b,’ * w mod M and a,’ 
< w. Using theorem 1, we can show that b,‘ is a super- 
increasing sequence and satisfies M > Cy= I b,’. It is ob- 
vious that the original Merkle-Hellman enciphering keys 
distributed in [ 1, M ] have been reduced to a,’ distributed 
in [ 1, w] but with the same security. The density can be 
controlled by properly choosing w which is much less than 
M. 

Example 1: I f  n = 6,  m = 8443, and w = 259, where 
M, w satisfy (lb),  then v = L M/w J = 32. 

Step 1: Randomly choose a superincreasing sequence 
B = (111, 189, 445, 770, 2399, 4325) satisfying (4). 

Step 2: Calculate A = (3420,6734,5496,5241,5002, 
5699 ) . 

Step 3: Calculate A’ = (53, 2, 57, 61, 81, 1 ) .  
Step 4: Calculate C = (13, 26, 21, 20, 19, 22) and B ’  

It is easy to check that a,’ = 6: * w mod M. 
As Merkle and Hellman suggested, if n = 100, b, is 

within the range of [2”+’- I  - 2” + 1, 2””’  - 11, M is 
chosen uniformly from the numbers between 2*01 and 2”’ 
- 1. We suggest that w is within the range of [ 2Io5 + 1 ,  
2Io6]. The density of our proposed algorithm is higher than 
0.94 in comparison to 0.5 obtained by the original Mer- 
kle-Hellman scheme. In general, many existing knapsack 
cryptosystems such as the Graham-Shamir system can be 
improved by our scheme. 

* w mod M, then a, < M for all i. ( 5 )  

ing keys, a,’ = a, mod w, then a,’ < w for all i .  

compute the deciphering keys b,‘ = 6, - c,. (6b)  

= (98, 163, 424, 750, 2380, 4303). 

IV. LINEARLY SHIFT KNAPSACK CRYPTOSYSTEM 

The high density knapsack system proposed in Section 
111, however, is a special case of the Merkle-Hellman 
scheme. Therefore, it is breakable by Shamir’s attack [ 121 
or other attacks proposed by Brickell [ 151, Adleman [5], 
and Lagarias et al .  [6]. In this section, we introduce a 
linearly shift method to help us to generate enciphering 
keys which cannot be obtained through single or mul- 
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Fig. 1. The description of parallel decryption architecture for the linearly 
shift knapsack cryptosystem. 

tiple multiplications. As a result, the similar cryptanalytic 
techniques mentioned above cannot crack our system. 

We describe the linearly shift knapsack cryptosystem 
as follows. 

Step I: Randomly choose an easy knapsack sequence 
B (bi ,  b2, * , b,,) .  

Step 2: Transfer this easy knapsack sequence into a 
hard knapsack sequence A by modular multiplications 
using (1). 

Step 3: Choose a random binary sequence Q = ( q l ,  q2, 
. . .  , q,,) and an integer k with 0 < k < min - (a,) for 
q, = 1. Then U, are linearly shifted by performing e,  = a, 
- kq, and e, are published as the public enciphering keys. 
The deciphering keys for intended receivers are (B, k ,  w ,  
M ). 

If the receiver receives S = Cy= I a ,x , ,  where X = ( x I ,  
x2, * - , x , , )  is the message, he can decipher S properly 
just by following the normal decryption procedure [3]. 
However, the receiver receives S' = Cy= I e,x,  instead of 
S .  From step 3 mentioned above, we obtain 

S * W - I  = ( 5  u,x , )  * w-I  mod M 
, = I  

' I  

= ( e ,  + kq,)x,  * W - I  mod M 

= S' * w- '  + r * C q,x, mod M 

, = I  

I f  

(7) 
, = I  

where r = kw-I mod M. 
Since Q and X are binary sequences, which implies 0 

5 E:'=, q,x,  I y 5 n ,  where y = CY=, 9,. Thus, the 
receiver can guess the correct S * W - I  mod M at most y 
+ 1 I n + 1 times. If the system is one-to-one, the right- 
ness of guessing can be easily verified through normal en- 
ciphering procedures. According to Shamir's theorem 
[16], "a random modular knapsack system with n gener- 
ators and modular M is likely to be one-to-one when n < 
( log2 M ) / 2  and non-one-to-one otherwise." That is, 
from this equation if M is chosen larger than 2'", then the 
system is likely to be one-to-one. The parallel decryption 

procedure is shown in Fig. 1. As shown in Fig. 1, the 
ciphertext S'js  first transformed by the secret key pair 
(,w , M )  to S. Since the enciphering keys are shifted, as 

the S and decrypts the messages 4, j = 0, 1, - , y by 
using the superincreasing sequence B.  These messages X,, 
j = 0,1 ,  * - *  , y contain the corrected message X, but 
the receiver does not know which is the corrected one. 
However, through the encryption procedure and in com- 
parison to the original ciphertext S', it is easy to find the 
corrected message X. As shown in Fig. 1, the complexity 
of decryption is about 1 multiplication, n subtractions, 
and n + 1 additions. 

Remarks: For a better uncertainty, the authors suggest 
that Q can be one of the following two types. 

a) Q is an arbitrary binary sequence with Cy= I q, = 
y = n / 2 .  

, q,,) with q, E { -1,  0, l }  and b) Q = (41, q 2 ,  * * 

cy=, q, = 0. 
In general, if Q is m-ary, the paths shown in Fig. 1 must 

be ( m  - 1) y + 1. However, the speed of decryption re- 
mains unchanged. 

Now, we prove that the inverse transform of E = ( e l ,  
e 2 ,  * , e, ,)  by ( w - ' ,  M )  does not form an easy knap- 
sack sequence. 

- I  

shown in (7), the receiver adds j * r ,  j = 0, 1, - * *  , y t o  

e, * w-l = (a ,  - kq, )  * W - I  modM 

= a, * W - I  - kq, * w-I mod M 

M + b, - r for q, = 1 and b, < r 

= b , - r  for q, = 1 and b, 2 r 

for q, = 0 

( 8 )  

[b,  

where r = k * w- I  mod M. 
Obviously, the cryptographer can control r such that the 

inverse transformation is not an easy sequence and also 
does not satisfy ( I C ) .  

In fact. if E is mapped from another easy sequence or 
random sequence satisfying ( I C ) ,  then the security of this 
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algorithm is equal to the Merkle-Hellman system or the 
systems proposed in [8]-[ 101. In [15], it is shown that the 
probability for a random sequence to be an image of a 
superincreasing sequence under modular transformation 
[i.e., ( l ) ]  is less than 2-(:) * e,)’ .  Now, we use the 
following theorem to prove that the probability for a ran- 
dom sequence to be an image of another random sequence 
is very small. 

, e l l )  are 
uniformly distributed, independent random variables in 
[ 1, M I .  The probability P that E be the image of a se- 
quence H ,  under a modular transformation ( IC), satisfies 

Theorem 2:  Assume that E = ( e l ,  e2 ,  . . . 

P < ei / n !  < n M / n !  (;I, ) ( 9 )  

Proof: It can be shown that if we randomly choose n 
integer hi from [ 1, M 1, the probability p satisfying Cy= I 

hi < M i s p  < l /n ! .  
Since there are at most C{i= I ei minima divide to E:!=, ei 

interval for the function g; ( t )  = eit  - s iM (see [15]), 
where si = Leir /M J . Hence, if we “test” every point 
in [ 1, M 1, we must find a modular transform ( wj,  M ), 1 
I j I Cy=, e,:’, if it exists. The probability, P ,  of suc- 
cess (assuming the independence of g, ( t )  values at the 
test points) is 

p < (i1 e i ) / n !  < n M / n !  Q.E.D. 

According to [15] and Theorem 2, we know that the 
probability for enciphering keys e, generated by our al- 
gorithm being the image of a superincreasing sequence is 
less than 2-4536 and being the image of random sequence 
is less than when n = 100 and A4 = 2”’. In other 
words, E have very large probability falling into the worst 
case of the knapsack problem. For a cryptanalyst, how- 
ever, it is an NP problem unless he can guess k and Q. 

Example 2:  
Step I :  As shown in Example 1 ,  we choose B’ = [98, 

163, 424, 750, 2380, 43031 with M = 8443, w = 259. 
Step 2: Transfer B‘ into a hard sequence A ’  = [ 53, 2, 

57, 61, 81, I ] .  
Step 3: Randomly choose Q = [ 1 ,  0, 1 ,  1 ,  1 ,  01 and 

k = 42, then the enciphering keys E = [ 1 1 ,  2,  15, 19, 
39, I ] .  

In  this example, E is found with worst case property 
which cannot be obtained from other key generation al- 
gorithms [7]. I n  general, this algorithm could be used to 
improve almost all knapsack cryptosystems such as [8]- 
[ lo].  It is easy to see that those systems are a special case 
of our system with q; = 0 for all i. 

V.  NON-ONE-TO-ONE SYSTEM BEHAVIOR I N  OUR 
KNAPSACK CRYPTOSYSTEM 

An interesting result of the linearly shift method de- 
scribed in the above section is that if the receiver pub- 
lishes Q,  then the enciphering keys can still be used in a 

knapsack cryptosystem even if these keys are non-one-to- 
one. The key point is that when Cy=, x i q ,  is known, the 
receiver can obtain S = CY= I xiai = E:‘= I eixi  + k C:l= I 

q ix i .  Since A is a one-to-one system (which is not pub- 
lished), the receiver can decrypt X uniquely. Before we 
describe how the system works, let us prove the following 
theorem. 

* , a, , )  be a one-to- 
one system and e, = a, - kqi,  0 < k < min * ( a ; )  for qi 
= 1. If Cl= xiei = Cy= I y ie i  where X # Y,  then Cy= I x iq i  

Proof: Let Cy= I x,q, = t l ,  Cy= I y iq i  = t2 and X # Y .  
Since Cy=, xie i  = Cy,, y i e i .  Thus, Cy=, x ie i  + ktl  = 
Cy= I y i e i  + kt,  + k (  t l  - r z ) .  Then Cy= I aixi = C:l= I yia,  
+ k ( t l  - r 2 ) .  Since A is a one-to-one system, it implies 
that 

Theorem 3: Let A = ( a l ,  a’, * 

# cy=, yjq; .  

n n 

c ajx; # c aiy;, 
i =  I i =  I 

:. tl # r 2 .  Q.E.D. 

From theorem 3 ,  we see that even if E is a non-one-to- 
one system, the receiver can decrypt X uniquely if he 
knows E:!=, x, qi. For convenience, we assume that q, = 
1 for i  = 1, 2,  * * , y a n d q ,  = Ofor i  = y  + 1,y + 2, 

, n (if Q is not of this form, it can be obtained by 
scrambling). y must be smaller than Ln - log? n J = t .  
Now, the transmitter divides the binary message into many 
blocks. Each block contains t bits for the message and n 
- t = m bits for the information E;= I q ix i .  Assume the 
ith block of message is X ,  = ( x i , ,  xi’, * . , x f l l ) .  The 
transmitter computes 

. . .  

\’ 

c x.. ‘JqJ . = z. = ( z .  f . ’ l l ~  Zi.,n - 1 1  . . .  , Z i . I )  
j =  I 

wherez;,, = Oor 1 ; j  = 1, 2,  * * * , m .  
The transmitter then puts Zi into the ( i  - 1)th block, 

that is, 
- xi - I . - ’’1 + I - Zi.  v i  

- x, - 1 . 1 1  - G. I 

for I I i I U ,  where U is the number of blocks. 
For the first block, xo., = 0, 0 I j I y ,  and xu., is a 

randomly chosen binary bit for y < j 5 t .  The transmitter 
can encrypt each block message into ciphertext using en- 
ciphering keys. When the receiver obtains the 0th block 
ciphertext, he can obtain the message uniquely (since SA 
= So = CY= I a,xo,, = Cy= I e,x,., in the 0 th  block). Since 
the next block’s information Cy= I x,q, is connected to the 
( i  - 1 )th block message, the receiver can decrypt the ith 
message uniquely. Thus, if Q is public, E still can be used 
in the cryptosystem even it is non-one-to-one. Under this 
condition, the high density algorithm proposed in Section 
111 can be used to reduce the ratio of data expansion and 
the public file memory. 
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VI. CONCLUSION 
This paper proposes two algorithms to eliminate the 

drawbacks of the knapsack public-key cryptosystem: a 
high density algorithm which can reduce the data expan- 
sion ratio and the size of the public file to about one-half 
of the Merkle-Hellman knapsack cryptosystem, and the 
linearly shift knapsack algorithm which can improve the 
system security. It was shown that the enciphering keys 
generated by the linearly shift knapsack algorithm have a 
very large probability [about 1 - ( n M / n ! ) ]  of falling 
into the worst case of the knapsack problem. In Section 
V, we also showed that even when the enciphering keys 
are non-one-to-one, it still can be used in cryptography. 

The ideal knapsack cryptosystem would have two char- 
acteristics: 1) the density is close to 1; 2 )  the enciphering 
keys cannot be transformed by single or multiple multi- 
plications. Note, if the high density algorithm is used first, 
it cannot guarantee that the enciphering keys generated by 
the linearly shift algorithm are one-to-one; although pub- 
lishing Q and using the protocol proposed by Section V 
can overcome this problem. However, it may reduce the 
system security. Therefore, further work is seen to be 
needed in this area. Is there an algorithm to choose k and 
Q which guarantees the enciphering keys belong to one- 
to-one when high density algorithm is used first? If the 
answer is positive, then the high density algorithm and 
linearly shift knapsack algorithm may construct an ideal 
knapsack cryptosystem. 

The knapsack public-key cryptosystems have the main 
advantage that the speed of both encryption and decryp- 
tion are much faster than other well-known public-key 
cryptosystems. For example, RSA needs about 3 n / 2  
modular multiplications for both encryption and decryp- 
tion, while in our system it needs only about n additions 
for encryption and 1 multiplication, n subtractions, and n 
+ 1 additions for decryption. Therefore, when the lin- 
early shift knapsack cryptosystem is acceptable in secure 
cryptography, the high throughput of the system and ease 
of implementation will make it an attractive alternative. 

REFERENCES 
[I] W. Diffie and M. E. Hellman, “New directions in cryptography,” 

IEEE Trans. Inform. Theory, vol. IT-22, pp. 644-654, Nov. 1976. 
[2] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining 

digital signatures and public-key cryptosystem,” Commun. ACM, vol. 
21, no. 2, pp. 120-126, Feb. 1978. 

[3] R. Merkle and M. E. Hellman, “Hiding information and signatures 
in trapdoor knapsack,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 
525-530, Sept. 1978. 

[4] A. Shamir, “A polynomial time algorithm for breaking the basic Mer- 
kle-Hellman cryptosystem,” in Proc. 23rd Annu. Symp. Foundations 
of Comput. Sci., Nov. 1982, pp. 145-152. Also IEEE Trans. Inform. 
Theory, vol. IT-30, pp. 699-704, Sept. 1984. 

[5] L. Adleman, “On breaking generalized knapsack public key crypto- 
systems,’’ Univ. Southern Calif., Los Angeles, Internal Rep. 
TR-83-207, Mar. 1983. 

[6] J. C.  Lagarias and A. M. Odlyzko, “Solving low-density subset sum 
problems,” in Proc. 24th Annu. Symp. Foundations Comput. Sci. ,  
1983, pp. 1-10, Also J. Assoc. Comput. Machine. vol. 32. pp. 229- 
246, 1985. 

[7] Y.  G. Desmedt, J. P. Vandewalle, and R. M. Govarets, “A critical 
analysis of the security of knapsack public-key algorithms.” IEEE 
Trans. Inform. Theory, vol. IT-30, pp. 601-611, July 1984. Also 

presented at IEEE Int. Symp. Inform. Theory, Les Arcs, France (Ab- 
stract of papers), June 1982, pp. 115-1 16. 

[8] A. Shamir and R. E. Zippel, “On the security of the Merkle-Hellman 
cryptographic scheme,” IEEE Trans. Inform. Theory, vol. IT-26, pp. 
339-340, May 1980. 

191 Y .  G. Desmedt, J. P. Vandewalle, and R. M. Govarets, “A general 
public key cryptographic knapsack algorithm based on linear alge- 
bra,” in Proc. IEEE Int. Symp. Inform. Theory (Abstract of papers), 
st. Jovite, P.Q., Sept. 26-30, 1983, pp. 129-130. 

[ 101 A. Shamir, “Embedding cryptographic trapdoors in arbitrary knap- 
sack systems,” Inform. Processing Lett., no. 17, pp. 77-79, Aug. 
1983. 

[ 1 I] B. Chor and R. L. Rivest, “A knapsack type public key cryptosystem 
based on arithmetic in finite fields,” in Advances in Cryptology: Pro- 
ceedings of Crypro ’84. Berlin: Springer-Verlag. 1985, pp. 54-65. 
(A revised version to appear in IEEE Trans. Inform. Theory.) 

[I21 R. M. F. Goodman and A. J.  McAuley, “A new trapdoor knapsack 
public-key cryptosystem,” in Advances in Cryprology: Proceedings 
of Eurocrypto ’84. Berlin: Springer-Verlag, 1985, pp. 150-158. 
Also IEE Proceedings, vol. 132, pt. E, no. 6 ,  pp. 289-292, Nov. 
1985. 

[I31 E. F. Brickell, “Solving low density knapsacks in polynomial time,” 
in Proc. IEEE Inr. Symp. Inform. Theory (Abstract of papers), St. 
Jovite, P.Q., Canada, Sept. 26-30, 1983, p. 130. 

141 H. W. Lenstra, Jr., “Integer programming with a fixed number of 
variables,” Math. Operations Res., vol. 8,  no. 4, pp. 538-548, NOV. 
1983. 

151 E. F. Brickell and G. J. Simmons, “A status report on knapsack based 
public key cryptosystems,” Sandia Nat. Lab. Rep., 1983. 

161 A. Shamir, “On the cryptocomplexity of knapsack systems,” in Proc. 
Symp. ACM Theory Comput., vol. I I ,  1979, pp. 118-129. 

171 E. F. Brickell and A. M. Odlyzko, “Cryptanalysis: A survey of re- 
cent results,” Proc. IEEE, vol. 76, pp. 578-593, May 1988. 

Chi-Sung Laih was born in Cha-I, Taiwan, on 
June 4 ,  1956. He received the B.S. and M.S. de- 
grees in electrical engineering from National 
Cheng Kung University, Tainan, Taiwan, Repub- 
lic of China, in 1984 and 1986, respectively. 

Since 1986 he has been an Instructor in the De- 
partment of Electrical Engineering, National 
Cheng Kung University, Tainan, Taiwan. He is 
presently a Ph.D. candidate at the Institute of 
Electrical Engineering, National Cheng Kung 
University. His research interests include cryp- 
tography, coding theory, and communications. 

Jau-Yien Lee (M’84-SM’88) was born in Fu- 
kien, China, on August 7, 1928. He received the 
B.S., M.S., and Ph.D. degrees in electrical en- 
gineering from National Cheng Kung University, 
Tainan, Taiwan, in 1966, 1970, and 1974, re- 
spectively. 

From 1977 to 1978 he was a Postdoctorate at 
San Jose State University, CA. From 1948 to 1961 
he served as an Instructor in the Army Signal 
School where he taught radio electronics. From 
1970 to 1982. upon transferring to the Military 

Academy, he served as a Faculty member and later aschairman of the 
Electrical Engineering Department of the Academy. From 1978 to 1982 he 
was also an Adjunct Professor in the Department of Electrical Engineering 
at National Cheng Kung University. In I982 he became Professor of Elec- 
trical Engineering, and he is now Chairman of the Department of Electrical 
Engineering. His principal fields of research are the areas of CAD/VLSI. 
signal processing, communications, and thin film circuitry. 

Dr. Lee is a member of AMSE, CIEE. and Phi Tau Phi. 

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 16:03 from IEEE Xplore.  Restrictions apply.



L A l H  cf o l . :  L I N E A R L Y  S H I F T  K N A P S A C K  PUBLIC-KEY C R Y P T O S Y S T E M  539 

Lein Harn (M’85) was born in  Taipei, Taiwan, 
in 1954. He received the B.S. degree from the Na- 
tional Taiwan University in 1977, the M.S. de- 
gree from the State University of New York, Stony 
Brook, in 1980, and the Ph.D. degree from the 
University of Minnesota, Minneapolis, in 1984, 
all in electrical engineering. 

From 1981 to 1984 he was a Research/Teach- 
ing Assistant and was involved in research on sig- 
nal detection and digital filtering in the Depart- 
ment of Electrical Engineering at the University 

of Minnesota. Since 1984 he has been an Assistant Professor in the De- 
partment of Electrical and Computer Engineering. University of Missouri 
at Columbia. and in the Department of Computer Science, University of 
Missouri at Kansas City. From 1986 to 1987 he was a Visiting Associate 
Professor at the National Cheng Kung University, Taiwan, R.O.C. Cur- 
rently he is a full-time Faculty member at the Computer Science Depart- 
ment, University of Missouri at Kansas City. His research interests include 
digital filter design. multidimensional digital signal processing. image pro- 
cessing, system performance evaluation and modeling, 3-D image pro- 
cessing. and cryptography. 

Dr. Ham is a member of Eta Kappa Nu. 

Yan-Kuin Su was born in Kaoh\iung, Taiwan. on 
August 23. 1948. He received the B.S .  and Ph.D 
degrees in electrical engineering from National 
Cheng Kung University. Taiwan. in 1971 and 
1977. respectively 

From 1977 to 1983 he was with the Department 
of Electrical Engineering, National Cheng Kung 
University. Taiwan. as an Associate Professor. 
and was engaged in research on compound semi- 
conductors and optoelectronic mdterial\ I n  1983 
he was promoted to Professor of Electrical Engi- 

neering. 
From 1979 to 1980 and 1986 to 1987 he was on leave and working at 

the University of Southern California and AT&T Bell Laboratom\ a\  a 
Visiting Scholar, respectively. He has published over 100 papers in the 
area of thin film materials and devices and optoelectronic devices His cur- 
rent interests include compound semiconductors. integrated optics. and mi- 
crowave devices. 

Dr. Su is a member of the Chinese Society of Engineering and Phi Tau 
Phi 

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 16:03 from IEEE Xplore.  Restrictions apply.


