
In terms of basis restriction mean-square-errors’ for 
p = 0.95, MDCTs have almost the same performance as DCT 
as shown in Table 2. 
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Fig. 1 Comparisons of transform efficiencies of order-8 M D C T s  and 
DCT for diflerent values ofp 

Table 2 BASIS RESTRICTION MEAN-SQUARE- 
ERRORS FOR ADJACENT ELEMENT 
CORRELATION p EQUAL T O  0.95 

No. of coefficients 
retained KLT DCT MDCTOS MDCT07 

2 0.1372 0.1381 0.1382 0,1383 
6 0.0567 0.0572 0.0573 0.0575 

10 04406 0~0409 0.0409 0~0409 
18 0.0263 0.0264 0.0264 0.0265 
26 0.0189 0.0189 0,0189 0.0189 
34 0.0136 0.0136 0,0136 0.0136 

Concluding remarks: A new algorithm based on the principle 
of dyadic symmetry and computer search has been proposed 
for the development of new transforms. These transforms are 
optimised in terms of transform eficiency for image coding 
applications. The new transforms obtained have been shown 
to be better than the DCT in terms of transform eficiency. 
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RSA BLOCKING AND MULTISIGNATURE 
SCHEMES WITH NO BIT EXPANSION 

Indexing t e r m :  RSA, Blocking, Multisignature 

Implementations of the RSA scheme have inherent difficulties 
related to bit expansion, with consequent difficulties for 
blocking and multisignatures. Solutions to these latter two 
problems, which flow naturally from a solution to the root 
problem of bit expansion are presented. 

Rivest, Shamir and Adleman’ presented the first public key 
encryption scheme, thereby implementing the idea presented 
in the seminal paper of Difie and Hellman.’ This scheme has 

sustained twelve years of cryptanalytic attack and is currently 
the most used, publicly known, public key encryption scheme 
in the world. It requires that each user obtain as secret key 
two large primes, p and q. and a value d ,  relatively prime to 
@(n), for n = p * q, and make public n and the inverse of d ,  e, 
modulo @(n). For n of size k bits, user A secretly sends a 
message unit M, encoded as an integer less than n, to user B 
by encrypting M to ciphertext C = WB mod n,, using the 
public key of user B. 

Three practical limitations for implementing this scheme are 
the following: 

(i) Bit expansion f o r  message blocking: Since n < 2’, message 
unit M, n < M < 2* cannot be encrypted using this scheme 
since they will encrypt to the same value as does message 
M’ = M mod n. As a result, for n with k bits, long messages in 
practice need to be blocked into message units (blocks) of 
maximum length, ( k  - 1) bits. Since the corresponding cipher- 
texts sometimes will be of length k bits, the encryption algo- 
rithm needs to be thought of as expanding message units by 
one bit per block. A recent solution to this problem3 adapts 
the RSA scheme to take messages of k bits per block, 
requiring an average of n/2’- ’ exponentiations, and leaking 
information in the p r ~ c e s s . ~ . ~  

(ii) Modul i  s i ze  clashes f o r  multisignature: The RSA scheme 
also allows for applying digital signatures to messages 
After hashing the message to a message unit, M ,  of k - 1 bits, 
user A applies secret key, d, ,  to M, thereby producing signa- 
ture S, = M d A  mod n r .  This encryption requires again an 
expansion of one bit. This digital signature idea has been 
expanded to that of applying any number of digital signatures 
to  a document (the multi-signature problem). Since each user 
who wishes to sign the document has a distinct public key, 
one cannot assume that the signature, SA, produced by the first 
signer A will be less than the modulus value, nB, of the second 
signer B if n,  > ns. The problem grows in dificulty as the 
number of signatories grows. The authors6 presented a solu- 
tion which required that the signers sign in the same order as 
the order of their moduli. Okamoto’ proposed a scheme 
which requires decisions to be made at each step, and then 
that extra bits (of intermediate signatures) be appended to the 
message in order to identify those decisions so that the final 
signature can be verified. 

(iii) Modul i  clashes f o r  digital  signature and secrecy:  The 
special case in problem (ii) for two signers is equivalent to the 
problem mentioned in the original RSA paper’ when a user A 
wishes to both apply a digital signature to a message unit and 
send that signed message unit secretly to a user B. To do this 
requires that both the secret key of user A and the public key 
of user B be used, specifically 

C = ( M d A  mod n,)’” mod nB. 

or alternatively 

C‘ = (Men mod nJd^ mod n ,  

Two well-known solutions to this last problem have been 
available for some time.’,’ The first uses a threshold scheme, 
which requires that each user choose two sets of public and 
secret keys, one with modulus less than a system threshold 
value and one with modulus greater than that threshold value. 
The second chooses the one of the two formulas for C given in 
(iii) above that has the first modulus applied less than the 
second. 

A third solution to this last problem was presented in the 
original RSA paper,’ based on a technique of Levine and 
Brawley’ : 

‘Each user has a single (e, n) pair where n is between h and 
2h, where h is a threshold (value). . . A message is encoded 
as a number less than h and enciphered (as in the ordinary 
RSA scheme), except that if the ciphertext is greater than h, 
it is repeatedly re-enciphered until it is less than h. Similarly 
for decryption the ciphertext is repeatedly deciphered to 
obtain a value less than h.’ 
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We shall refer to this encryption scheme as ‘repeated expo- 
nentiation’, utilised in a communication system with a system 
defined threshold value. We now show that this scheme, in 
such a communication environment, can be used to solve the 
other two problems listed above as well, requiring no bit 
expansion, and providing relative efliciency. 

We solve the bit expansion problem for blocking messages 
as follows: 

(a) Since intermediate values to be ‘re-encrypted’ during 
repeated exponentiation have k bits, we might as well think of 
the input and output to the exponentiation function always as 
k bit numbers, with the original input, and the final output, 
being the only ones with high-order bit 0. The bit expansion 
of the algorithm itself, is 1-1 since this encryption scheme 
maps (k - 1)bit message units to (k - 1)bit ciphertexts. 

(b) Though this encryption scheme is non-deterministic in the 
number of exponentiations required, that number has a geo- 
metric distribution with success parameter, p, of value 2’- ‘/n, 
which ranges in value over the interval (1/2, 1). Hence the 
expected number of exponentiations required in one encryp- 
tion ranges over the interval (1, 2). We can take 1.5 as an 
average value for this number of exponentiations if users ran- 
domly choose their moduli values (n) over the interval (2’-’, 
2’). 

(c )  The result is that messages can now be blocked into 
message units of k - 1 bits, and each message unit will be 
encryypted into a (k - 1) bit ciphertext. Hence we have 
removed the bit expansion problem associated with the orig- 
inal RSA scheme. 
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M I N I M U M  AREA ANALOGUE-DIGITAL 
CALIBRATION NETWORK FOR 
HIGH-RESOLUTION DATA CONVERTORS 

Indexing terms: Calibration, Data processing 

To solve the multisignature problem, all signers must choose 
moduli of the same number of bits-say k bits. Both message 
blocks and signatures will be restricted to being of maximum 
size (k - 1 )  bits. The order of signature is irrelevant. If there 
are m signers, the first signer applies the repeated exponentia- 
tion technique to the original (k - l) hit message, M, produc- 
ing a signature, SI ,  of (k - 1 )  bits, using this signer’s secret 
key. Then, in succession, signer i (2 5 i I m) receives a (k - 1) 
bit signature, Si-’, from signer (i - l), and applies the repeat- 
ed exponentiation technique to S i - ,  to produce (k - 1) bit 
signature Si, using this signer’s secret key. The final (k - 1 )  bit 
signature S, constitutes the multisignature for message M. 
The bit-ratio is exactly 1 - 1. The price to achieve this is in the 
number of exponentiations. Instead of the ideal of m exponen- 
tiations being required for applying m signatures, a reasonable 
approximation to an average number of exponentiations 
required using this scheme is 1.5m (assuming each signer’s 
expected number of exponentiations is 1.5). 

Two final comments: 

(a) We present here a tradeoff technique which solves the basic 
problem of bit expansion, and other problems based on it, 
while paying a price in time that is constantly being reduced 
as more and more eflicient hardware implementations of 
exponentiation are produced. 

(b) This approach is equally applicable to any encryption 
scheme which uses the modular operation for a product of 
two primes-in particular, for the authors’ efficient Rabin 
scheme.1° 
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A novel calibration network where the capacitors are deter- 
mined with reference to the minimum geometry capacitor 
unit allowed by the technology and follow a non-binary 
weighting rule to accommodate the large inaccuracies inher- 
ent to such small capacitance values is described. This, 
together with the rather simple digital cell which is associ- 
ated with the calibration capacitors, and an efficient inter- 
connect strategy, makes it possible to achieve a minimum 
area calibration network suitable for high-resolution data 
convertors employing capacitor arrays. 

Introduction: Two alternative types of convertors have 
become dominant for high-resolution data conversion, namely 
the sigma-delta and the successive approximation with self- 
calibration. Sigma-delta convertors attract widespread interest 
for high performance digital audio, since they minimise the 
number of critical analogue components and make extensive 
use of digital signal processing techniques.’ Self-calibrated 
successive approximation convertors are still rather competi- 
tive for a large number of high resolution data acquisition 
applications.’-‘ To keep up with the competitiveness of this 
type of convertor it is necessary to develop new circuit tech- 
niques aiming at the reduction of the silicon area required for 
integration while maintaining the conversion resolution. This 
is particularly important in the case of the self-calibration 
network which typically occupies a significant portion of the 
overall area of the convertor. 

In a high-resolution successive approximation analogue-to- 
digital convertor (ADC), the binary capacitor array is usually 
segmented into a main-array, for the M most significant bits 
(MSBs), and a suh-array, for the L least significant bits (LSBs), 
to significantly reduce the overall capacitance spread and, 
consequently, the input capacitive load and also the silicon 
area required for integration? In this type of architecture, 
schematically illustrated in Fig. 1 ,  the capacitors of the main 
array usually need to be calibrated to guarantee the required 
resolution and linearity specifications. This is achieved by 
means of self-calibrating capacitor arrays whose weights must 
be as small as f 1/4 of the LSB of the convertor. In the novel 
calibration network described in this letter, the capacitor 
vaues are determined with reference to the minimum geometry 
capacitor unit allowed by the technology and obey a non- 
binary weighting rule to  accommodate the large inaccuracies 
inherent to such small capacitance This, together 
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