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Abstract: We present a cryptographic master-key- 
generation scheme based on a recently developed 
cryptographic multi-level key generation scheme. 
That multilevel key generation scheme is a logical 
complement to the well known Akl-Taylor- 
MacKinnon-Meijer scheme, and is particularly 
efficient for hierarchical structures of limited 
depth, which is the case for the master-key appli- 
cation at hand. The master-key problem is defined 
in this paper and our solution is presented, and 
illuminated, by way of comparison with a solution 
presented recently by Chick and Tavares, based 
on a variation on the Akl-Taylor-MacKinnon- 
Meijer scheme. Once this master key scheme is 
obtained and understood, it becomes a natural 
step to apply it to solve the public-key-distribu- 
tion problem. This is achieved in a manner, which, 
unlike the earlier Diffe/Hellman solution, is 
extendible to groups of more than two users. 

1 Introduction 

In this paper is presented a cryptographic master key 
generation scheme on top of a cryptographic multilevel 
key-generation scheme recently developed by Harn and 
Lin [l]. That multilevel key-generation scheme is a 
logical complement to the well known Akl-Taylor- 
MacKinnon-Meijer (ATMM) scheme, and is particularly 
efficient for hierarchical structures of limited depth. In 
this paper, after presenting a brief review of the multilevel 
key-generation schemes of Akl et al. [2,3,4] and of Harn 
and Lin, we build our master-key-generation scheme on 
top of that of Harn and Lin and apply this master-key- 
generation scheme to develop a new public-key-distribu- 
tion scheme. 

2 Cryptographic master-key problem description 

The following general definition of master key is used: 

key K which 
A master key for keys K,, K,, . .. , K,(n > 2) is a single 

(i) accesses all information accessible by any subset of 

(ii) accesses no information not accessible by some 
{KI,  K ,  ,. .., 

subset of { K , ,  K,, ..., K , } ;  
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(iii) cannot be determined by any proper subset of { K , ,  

(iv) has length satisfying the property length (K) < Z 
K ,  , . . . , K n } ;  and 

length (K i ) ,  ( 1  6 i 6 n) 

(ideally K is a single key of the same size as K,, . . . , K J  
Clearly, in the ideal case, if one is not to contradict 

basic theorems of information theory, there must be a 
functional relationship between K and {Kl,  K , ,  . . . , K n } ,  
i.e. K must contain within its structure room for the 
structures of K,, ..., K,, and each of K,, ..., K ,  must 
bear only a portion of the structure in K. 

We assume a set of nodes in a directed, acyclic graph 
C, ordered by partial order >, and associated with each 
node i of the graph G a key K i ,  such that the set K of all 
keys itself constitutes a directed, acyclic graph, ordered 
by relation 2, where K i  2 K j  means that key K i  accesses 
all information accessible to key K j .  Then (C, >) is iso- 
morphic to (K, 2) under the bijection f: i + K i .  If we 
refer to nodes i and j of graph G as the classes of users 
that possess keys K i  and K j ,  respectively, then Ki 2 K j  
means that class i is supervisor to class j ,  or class j is 
subordinate to class i. The isomorphism determines an 
acyclic digraph structure on the key space K. Henceforth 
we replace the expression 'class of users' by the simpler 
term 'user'. 

We wish to be able to create a master key K M s  for any 
subset S of keys in K (i.e. add a new key, a virtual key, to 
graph K, and a new node, a virtual node, to graph G). 
Without loss of generality, we instead create master keys 
K,, for only each minimal subset S* of keys in K, where 
minimal subsets are those having the property that if Ki 
and K j  belong to set S*, then K, is unrelated to K j  (i.e. 
K i  2 K j  and K j  2 Ki) .  This means that each element of 
S* accesses unique information which no other element 
of S* can access. Based on the isomorphism between (G, 
>) and (K, z ), the above definition of minimal subsets 
applies to nodes of G as well as to keys of K. 

Example: Let G consist of the graph of seven nodes with 
keys K,, K,, . .., K, shown in Fig. 1. The master key for 

Fig. 1 Graph of seven nodes with keys K , ,  K , ,  . . . , K ,  

S: = {Kl,  K , }  is the same as that for {Kl ,  K,, K 5 } ,  but 
different from that for { K , ,  K 5 } .  The master key for 
S: = { K , ,  K , }  is the same as that for { K 2 ,  K,, K,, K , ,  

203 

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 15:20 from IEEE Xplore.  Restrictions apply.



K7}, and any set 'in between'. Hence only {K,, K3} need 
be considered. There are 34 distinct minimal subsets of G 
and hence 34 distinct master keys for this key space {Kl, 
K 2 ,  ..., K7}r 

3 Master-key-generation scheme 

We now present a multilevel hierarchical scheme for gen- 
erating keys for all nodes in a graph G, i.e. key graph K 
such that (G, >) is isomorphic to (K, z), and then extend 
that scheme to generate also master keys for all minimal 
subsets S* of K such that the size of the master key is 
ideal. 

Akl et al. [2, 3, 41 developed the first such multilevel 
hierarchical scheme. Their scheme (in its original form, 
sufficient for current purposes) utilises a key centre which 
assigns to each node of graph G a prime (say, with node i, 
the ith prime p i )  and assigns to node i key K i  = 
a" mod N, where N = p * q for two large primes p and q, 
and a E [2, N - 11, a relatively prime to N, and t i  = I I p j ,  
where the product is over all users j E G such that i 3 j. 
The value N and the values ti (for all users i) are made 
public, while p ,  q and U are kept secret. 

Recently, Chick and Tavares [SI adapted this scheme 
of Akl et al. to produce a master-key scheme. The 
primary difference from the original Akl scheme is that, 
whereas Akl rules out the possibility of all the immediate 
descendants of a node together calculating the key for 
that node, Chick and Tavares allow for that possibility, 
since that possibility is implied in the concept of master 
key. The authors made a similar adaptation in another 
context [SI. 

The Harn and Lin Scheme [l] is as follows. A key 
centre selects safe primes p and q, calculates N = p * q. 
selects a E [2, N - 13 such that a is relatively prime to N, 
assigns to node i prime ei = ith odd prime, calculates 
di = e;' mod W N ) ,  where @ is the Euler totient function, 
and assigns to node i key 

Ki = undj mod N 

where the product is over all j, i 2 j. The centre keeps p ,  q 
and the values di (for all users i) secret and makes N and 
the values ei (for all users i) public. Note that this defini- 
tion is complementary to that of Akl et al. whereas the 
Akl et al. scheme uses public information in the expon- 
ent, and that information relates to all nodes not sub- 
ordinate to the given node i, this scheme uses secret 
information in the exponent, and that information relates 
to all nodes that are subordinate to the given node i 
(including node i). 

Corresponding to each exponent is the corresponding 
value t i  = ne,, where this product is also over all nodes j 
such that i > j .  In this scheme, it is necessary to publish, 
for each user i, the value t i .  Access to such public keys is 
all that is needed for the holder of any key to derive the 
key of any of its subordinates. Specifically, if i 2 j ,  then 
Kj  = K F  mod N, where the product is over all k such 
that i > k and j & k, or equivalently as Kj = Kf"'j mod N .  

Harn and Lin [l] show that their scheme allows for 
expansion of the user graph G, requiring changes to keys 
only at nodes of which the new node is subordinate, 
unlike the Akl scheme where new nodes cannot be added 
without requiring the regeneration of a completely new 
system of keys. 

To produce master keys as an extension of this 
scheme, we follow the following procedure. Correspond- 
ing to minimal subset s* = { K i , ,  K i , ,  ..., K i i }  master 

key K,,* would be calculated by a key centre as 

K,,. = U"'J mod N 

where the product is over all values j such that t 2 j for 
some t E {il, i,, .. ., ik}. Then any key KiJ can be calcul- 
ated by 

KiJ = (KM,Jnek mod N 

where the product is over all k such that ij 3 k but is > k 
for some is E { i l ,  i,, .. . , ik} ,  i, # ij. If we express the Il ej 
over all t, ij 2 t, as Ei , ,  and II e j  over all t, i, 2 t for some 
t E { i l ,  i,, .. ., ik} as E,. then key Ki. can be derived from 
the master key KMV by the simple computational 
formula 

Kij = (KM,.)EsiEi~ mod N 

The significance of minimal subsets becomes evident. 
Using minimal subsets allows us to associate each master 
key to a virtual node of a 2-level virtual graph, which 
node has as its subordinates in this virtual graph only the 
set of nodes { i l ,  i,, ..., &}, and where the master key 
K,,* = and' mod N, has exponent product over the 
union of the sets of secret keys found in the exponents of 
the keys Ki,, K:,, ..., K,,. 

We can now replace the service graph used in the 
Chick and Tavares scheme by the entire user graph of the 
Akl et al. scheme, and, in the terminology of the present 
paper, present master keys associated with virtual nodes 
superimposed on the Akl user graph as follows. For 
minimal subset S* = {Ki,, Ki,, ..., Ki,} the correspond- 
ing master key is given by 

K,,, = agcd(f i ,k. l , . l l  ..., 

Defining t,, = gcd(ti, 
then can be calculated as 

mod N 

ti, ,, . . . , ti, k ) ,  any subordinate key 

Ki, = (KMs.)fbire mod N 

3.1 Security 
The security of our master-key scheme is based on the 
security of the underlying Harn and Lin multilevel key- 
generation scheme, specifically the fact that the keys p ,  q 
and di (for all users i) are secret. It is therefore based 
ultimately on the fact that users are unable to factor N 
into p and q or, equivalently, to find di from ei for any i. 

For any owner of a master key to calculate any other 
master key or user key to which it should not have access 
would require that that owner obtain access to at least 
one secret value d j .  Owners of master keys, like users, 
can remove secret keys from exponents, using the pub- 
licly known values ei (for all users i), but cannot add 
secret keys to exponents. What was just stated about an 
owner of a master key holds just as well for any group of 
owners of masters keys, who would attempt to act in col- 
lusion to calculate a key (master key or user key) to 
which they should not have access. 

4 

We now apply our master-key scheme to develop a 
group-key-distribution scheme. Let us suppose that there 
will be at most n users registered into the system, and 
that once the size reaches n no more users can be added. 
Let us call the users (real and potential) uI ,  U,,. . . , U,. 

We first show how keys for any groups of size two can 
be generated. This will be comparable to the original 
public-key-distribution scheme (PKDS) of Diffe and 

Application to a group-key-distribution scheme 
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Hellman [7]. Then we will generalise the scheme to cover 
any groups of size k (2 < k < max) for some fixed 
maximum size, max, much smaller than n. This the Diffie- 
and-Hellman scheme could not do. 

4.1 Groups of size 2 
For our scheme a key centre is required, and the key 
centre, rather than individual users, generates all secret 
and public keys for all users (real or potential) of the 
system. To understand the method of generation of these 
keys, we need to conceive of a two-level graph G. We 
start with level 2. 

There are .C, potential groups of size 2. We represent 
each group as (q. r) with q < r and 1 Q q, r < n, and 
order these groups by the natural relation (4, r) < (s, t) if 
and only if 4 < s or (q = s and r < t), i.e. lexicographic 
order. We let these ordered pairs (q, r) constitute the 
nodes on level 2 of a graph G, with (1, 2) being node 1 
and (n - 1, n) being node ,C, , and in general (4, r) being 
node h, where h can be calculated from 

h = (q - 1N2n - q)/2 + ( r  - q) 

The users (real or potential) U,, U,, . . , , U, of the system 
will be constituted as level 1, with user u,(l Q i Q n) being 
supervisor to every group (q, r) on level 2, and only those 
groups, for which 

Given this virtual graph G, the key centre can now 
generate keys for the system. The key centre selects safe 
primes p and q, calculates N = p*  4, and then selects 
a E [2, N - 11 such that a and N are relatively prime. 
The centre assigns odd primes eh, to the nodes h on level 
2 of graph G, where, as above eh is the hth odd prime. It 
also calculates their inverses d ,  modulo W N ) .  The centre 
implicitly associates to node h on level 2 key K ,  = ad* 
mod N .  Then, for user u i ,  the corresponding key Ki is 
defined as K i  = a(ndh) mod N ,  where the product is over 
all secret keys d ,  associated with nodes h on level 2 to 
which i belongs. 

Since each user is supervisor to every group to which 
he/she potentially can belong, then that user can calcul- 
ate all needed group keys. For example, user ui can calcu- 
late the key for communication with user uj as follows: 
Ki, = K T  mod N, where E' is the product of all public 
keys corresponding to groups to which i belongs, except 
group ( i ,  j )  or ( j ,  i). Note that, in theory, each user does 
not need to have a table of all public keys, since anyone 
can calculate any public key as follows: given group (q, r), 
calculate the corresponding position h of that group on 
level 2, using the equation given above, and then calcul- 
ate the hth odd prime. For simplicity, user ui could calcu- 
late all of these values for the groups (i, k )  or (k ,  i) for all k 
with whom this user is likely to want to communicate, 
and store them locally (or of couse the system could cal- 
culate them and given them to user ui). Or user ui (or the 
system) could calculate all (n - 1) such public keys as 
well as the product of all of them (call it E), and the user 
could store these n values (only one of which, E, is long). 
Then the above calculation of key Ki, could be made 
much more efficient, since the user would need to fetch 
from the table the value E and the key corresponding 
to group (i, j )  or ( j ,  i), call it e, and calculate K i ,  = 
Kfie'  mod N .  

4.2 Groups of size k ,  2 < k Q max 
The scheme just presented generalises very simply to the 
case where we wish to consider group keys for groups of 
any size k between 2 and some reasonably sized bound, 
max. Two possible approaches follow. 

= i or r = i. 
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4.2.1 Approach 1 : First, generalise the case just present- 
ed to any specific group size k, 2 < k < max. Now level 2 
of our virtual graph contains nodes, corresponding to 
all groups of size k, with these groups ordered by 'lexico- 
graphic order', with the group in position h being assign- 
ed public key e,, = hth odd prime, using as base a,, and 
with the rest of the scheme precisely as for the special 
case k = 2 presented above. To find the position h of 
group ( i l ,  i,, . . . , ik), we need to use a more complicated 
algorithm as follows: 

Input {n ,  group (i,, i,, . . . , ik)} 
If necessary, sort i,, i , ,  . . . , i, such that i, < i, < . . . < i, 

output = s{s, (is- ,)', (is)'} + (i; - i;- ,) 
k - I  

r = (i,- I), + 1 

Let the master key given to user i in this scheme be 
referred to as KI". 

The key centre executes this procedure (max - 1) times 
and distributes to each user (max - 1) keys: to user i keys 
(K!2) ,  KI3), . . . , K!"")). Then when user i wants to com- 
municate with a group of size k, he/she uses as master 
key for that group the key K!". 

4.2.2 Approach 2 :  For each user to use exactly one 
master key for communication within any group of any 
size k, 2 < k Q max, the number of nodes on level 2 must 
be Z "Ck,  where the summation is over all k, 
2 < k Q max. We use the same lexicographic order as we 
used in approach 1 for all groups of any specific size k, 
and we then order all groups of size k, in front of all 
groups of size k ,  if k, i k ,  . The rest of the procedure is 
basically the same, with the one change that the position 
h of group (il, i,, . . . , i k )  is obtained by adding to the 
value obtained from the algorithm above the sum Z .Cj, 
where the summation is over all j, 2 < j < k - 1. 

4.3 Comparison between Diffie and Hellman PKDS 
and our scheme 

There are several significant similarities and differences 
between our public-key-distribution scheme just pre- 
sented and that of Diffie and Hellman [7]. They are: 

(i) In the Diffie and Hellman scheme, if one thinks of 
their secret key for each user as a master key which that 
user can use as needed to calculate any needed secret 
session key for communication with any other user (using 
also that other user's public key), then their scheme 
becomes very similar to our scheme just presented. 

(ii) In the Diffie and Hellman scheme, the secret key 
(master key) is chosen by the user and can be very short. 
However, the public key, also determined by the user, is 
very long. In our scheme, public keys and secret keys are 
determined by a key centre. The public key for each 
group to which a user belongs is very short while the 
individual user's secret key (master key) is very long. 
Hence, in our scheme, each user needs only maintain a 
table of small public keys associated with groups to 
which the user is likely to belong, as well as a single long 
key. This is in contrast to a table of long public keys 
required for the Diffe and Hellman scheme. 

(iii) The Dime and Hellman scheme is based on the 
complexity of the discrete-logarithm problem. Our 
scheme is based on the complexity of the factorisation 
problem. 

(iv) While the Diffie and Hellman scheme works only 
for the case of generating and distributing a key for secret 
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communication between two users, our scheme can be 
used for a group of any size within a system bound. 

5 Summary 

In this paper we have presented a cryptographic master- 
key-generation scheme based on a cryptographic- 
multilevel-key-generation scheme recently developed by 
Harn and Lin which is particularly efficient for hierarchi- 
cal structures of limited depth, which is the case for the 
master-key and public-key distribution applications. 

In the Harn and Lin key-generation scheme the nodes 
stand for real entities, and each entity has a single crypto- 
graphic key which controls access to all information 
associated with that entity, and also can derive the 
cryptographic keys of all entities that are its descendants 
in the graph hierarchy. The scheme prevents collusion of 
any number of descendants to obtain the key of a 
common ancestor in the graph hierarchy. In this regard, 
the Harn and Lin scheme is equivalent to the Akl et al. 
scheme. 

We then superimposed on this real graph virtual 
nodes (entities) which possess master keys which can 
derive the keys of all of their immediate descendants in 
the real graph. These virtual nodes which possess master 
keys cannot be thought of as real nodes in an extension 
of the original graph, since, unlike the real nodes in that 
graph, no primes were assigned to these virtual nodes, 
and hence only primes associated with nodes that are 
descendants of these virtual nodes are included in the 
definition of their master keys. In other words, the master 
keys contain exactly the same amount of information as 
does the set of keys of the minimal set of nodes that the 
virtual node associated with the master key immediately 
dominates. On the contrary, a key for a real node in the 

graph contains its own unique information as well as that 
of all of the keys associated with its descendants. 

We then treated the public-key-distribution problem 
as an application of this master-key problem, and hence 
solved it in the same manner. Unlike the earlier Difie 
and Hellman solution, this solution is extendible to 
groups of more than two users up to a fixed (agreed- 
upon) maximum number of users. In this application, the 
nodes on the ‘upper level’ are the real nodes and their 
immediate descendants on the ‘lower level’ are the virtual 
nodes, corresponding to groups of users. Practically 
speaking, this scheme works best for small values of the 
size of the graph and of the agreed-upon maximum 
group size. 
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