Correspondence.

A Protocol for Establishing Secure Communication Channels in a Large Network

Lein Harn and David Huang

Abstract-Knowledge exchange and information access in a truly distributed network often require transmitting of data through an open media. Consequently, data presented through such an environment are vulnerable to attacks. To minimize such vulnerability, data transformation or encryption/decryption techniques are often utilized among senders and receivers to achieve secure communication. Since data encryption/decryption requires sharing of a secret session key, finding an efficient way to distribute the session key in a large-scale, truly distributed network has been a nontrivial task. This paper presents a protocol for efficiently distributing session keys in such an environment to establish a secure channel. We assume the target network consists of many locally trusted centers, and each center has many users attached to it. The scheme incorporates the public-key distribution concept and the RSA encryption scheme as the basic mathematical tools, but eliminates the storage problem associated with huge public-key files. In addition, the proposed scheme has the added feature of providing the authenticate session key to the two parties in a secure communication.

Index Terms-Protocol, data security, RSA, public key, encryption.

I. Introduction

With rapid growth of modern technology, more and more people rely on computer networks to exchange knowledge, access information, and process data in a distributed environment. One major drawback of transmitting data through such an environment is that it opens more security holes to intruders and wiretappers. To meet the demand of people who seek secret communications, various kinds of data transformation, or encryption/decryption techniques, have been developed such that the data through open media become meaningless to intruders, but the original text can be recovered when data reach the destination. The encryption/decryption performed between the sender and the receiver requires to share a secret session key between these two parties. Traditionally, private couriers were utilized to distribute the secret session key. This approach was also used when a group of users were involved in a private conference. But with the explosion of secret communications over a distributed network environment, this approach has been rendered obsolete.

In 1976, Diffie and Hellman [1] introduced the concept of the public-key distribution system, which provides a realistic alternative to the traditional approach. One of the problems arising with this approach is that unauthorized users may attempt tampering with the public keys stored in the public-key file. To solve this problem, key authentication schemes are proposed to be added in conjunc-

Manuscript received December 6, 1988; revised September 1, 1990 and June 8, 1993.

- L. Harn is with the Computer Science Telecommunications Program, University of Missouri-Kansas City, Kansas City, MO 64110.
- D. Huang was with the Computer Science Telecommunications Program, University of Missouri—Kansas City, Kansas City, MO 64110. He is now with the Wollongong Group Inc.

IEEE Log Number 9212808.

tion with Diffie and Hellman's scheme to make their key distribution scheme fully secure. Two such schemes are the public-key distribution with certificate [2] and the public-key distribution with tree authentication [3]. Both of these schemes, however, being centralized approaches, have the weakness that they too require the maintenance of a large public-key file. Considering the case of a large and distributed environment with millions of users, managing a centralized file with that many entries clearly is impractical [4]. In 1984, Shamir [5] proposed the new idea of an identity-based cryptosystem for distribution of session keys. Since then, many algorithms [6]-[10] have been proposed to implement this identitybased cryptographic approach. However, the security of these algorithms is still being tested by the cryptographic community. There are some other methods for distributing secret session keys to network users using a centralized key generation and key distribution approach [11, 12]. These schemes have three major drawbacks in common: 1) a large key file needs be maintained at the key center, 2) the centralized key center is the focus of cryptanalytic attack, and 3) since all key generation and distribution go through this center, traffic congestion between the key center and other nodes in the distributed network could be severe.

Other efforts have been made towards finding more suitable solutions to the user's authentication problem in a large-scale network. One scheme proposed in 1986 by Birrell et al. [4] assumes the existence of a hierarchical global tree-structured name service in the network. Each principal (principals could be people, machines, organizations, printers, databases, file systems, etc.) must register into this name service at a directory, and all directories maintain a fixed logical relationship to all other directories in a tree hierarchy. When principle i is registered under directory j, directory j becomes the parent of principal i, and a secret key K_i is shared by these two entities. Each directory shares a secret key with its parent directory (if any) and with each directory that is its child in the directory tree hierarchy. Thus, a secret session key transmitted from principle i to principle k is first passed to directory j, and then, using a relative name path through a sequence of directories, to principle k's directory and so to principle k. The problem associated with this method is that a secure communication channel between principle i and principle k needs to be established via some indirect trusted intermediate name service directories. Thus, the shared key between i and k is also exposed to all these intermediate directories.

The communication protocol that we are going to present in this paper incorporates the public-key distribution concept [1] and the RSA public-key encryption scheme [13] as the basic mathematical tools, and is suitable for a large-scale distributed network. Any number of network users (or principals) can be added onto or deleted from the network freely without affecting the performance of this scheme. Even though public-key concepts are utilized, there is no need for each user to keep a copy of the global public-key file. We assume that the network is distributed in the sense that there does not exist a globally trusted key distribution center (KDC) or authentication center. However, we assume that the network consists of many local centers, and all network users must register under one of these centers. These local centers are trusted in the

1041-4347/94\$04.00 © 1994 IEEE

sense that they are expected to handle requests from their users exactly according to the proposed protocol, and they have no ability to interpret secret conversations carried out among different users of the system.

Section II gives a detailed description of our scheme; Section III presents the security analysis of our scheme and discusses its advantages and tradeoffs; Section IV is the conclusion.

II. THE PROPOSED SCHEME

Our proposed scheme requires a large-scale distributed network service consisting of many local centers, each local center having several or many users attached to it, as shown in Fig. 1. The network service may be in a computer network system, consisting of many hosts and users attached to hosts, or in a telephone system, consisting of many switching centers, and telephones attached to the centers, or in a networked banking association, consisting of many headquarters, and banks attached to headquarters, etc. Any user who wants to access the network service must register under one of the local centers (LC) when first joining the network, providing to LC some personal information. Each LC must follow certain procedures and protocols in order to make this scheme work.

A. Initialization

Each LC_i (local center i) needs to select two distinct large primes p_i and q_i , and calculate

$$n_i = p_i * q_i$$

and

$$\phi(n_i) = (p_i - 1) * (q_i - 1)$$

where ϕ is called the Euler totient function [15, p. 41].

Each LC_i needs to select signature and verification keys e_i and d_i , respectively, such that

$$(e_i * d_i) \bmod \phi(n_i) = 1. \tag{1}$$

Just as in the RSA scheme [15, pp. 101-102], if (1) is satisfied, then the following verification operation (3) will restore the original plaintext message M from its signature C:

Signature Generation:
$$C = E_{e_i}(M) = M^{e_i} \mod n_i$$
 (2)

Signature Verification:
$$M = D_{d_i}(C) = C^{d_i} \mod n_i$$
. (3)

The two values d_i and n_i are recorded onto a verification table (also called the public-key table of the local centers), as shown in Fig. 2. This table is duplicated at each LC, and can be made public without threatening the system's security. Other information, such as e_i , p_i , q_i , and $\phi(n_i)$, should be kept secret and are known only to LC_i. When a new LC is created within the network and chooses its public and private keys, its public key is added to the table, and this update information should be broadcast to all LC's. On the other hand, when an old LC is deleted from the network, one entry in the public-key table of all LC's needs to be removed.

If user i (U_i) wants to join the network, it is mandatory that U_i does two things during registration.

1) Select a secret random integer X_i and compute the corresponding public-key information Y_i as

$$Y_i = a^{X_i} \mod N$$

where N is a large prime and a is an integer within the range [1, N-1]. Both a and N are publicly known throughout the network. Y_i is U_i 's public key.

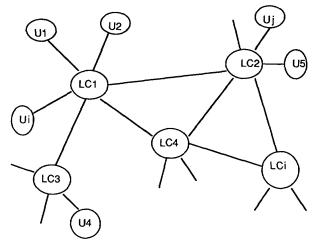


Fig. 1. A large, distributed network service.

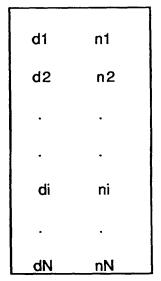


Fig. 2. Public-key table for local service centers.

- 2) Register under some LC. Registration is similar to applying for a credit card or having a new telephone line installed; it may involve verification of the user's identity and the checking of the user's references. More specifically, if U_i wants to register under LC₁, then the registration procedure should include the following
- a) U_i submits his/her name, public key Y_i , and some personal information such as social security number, hair and eye colors, etc., to LC_1 .
- b) After verifying the correctness of the submitted information, LC_1 appends its own ID, ID_{LC_1} , to the user's supplied information, and makes a new personal ID, ID_i , for U_i . In other words, this new ID_i is formed by concatenating several segments of data, and each segment contains specific information such as U_i 's name, U_i 's SSN, Y_i , ID_{LC_1} , etc.
- c) LC₁ calculates $S_i = E_{e_1}(ID_i)$ and issues both S_i and ID_i to U_i . Since both S_i and ID_i are large integers, it is difficult for U_i to memorize them. S_i and ID_i will need to be entered into the system

from a physically interconnected point to the network each time that U_i wants to authenticate himself/herself to a remote entity. To type in large, hard-to-memorize character strings may not be a very pleasant experience. Thus, we recommend the use of some local storage device, e.g., a PC diskette or magnetic card or smart card. In other words, at registration time, the values of S_i and ID_i should be recorded onto such a device and then issued to U_i .

B. Authentication

Suppose U_i in Fig. 1, attached to LC₁, wants to create a secure channel (to share a secret session key) with U_j attached to LC₂. The authentication procedure works as follows:

 U_i sends S_i , ID_i as plaintext through the network to U_i .

Upon receiving S_i and ID_i , U_j extracts ID_{LC_1} from ID_i . Next, U_j obtains d_1 and n_1 from the verification table of his/her local center LC₂. Then, U_j computes a user identification for U_i as follows:

$$ID_i'' = D_{d_1}(S_i).$$

If $ID_i'' = ID_i$, the authentication procedure will continue; otherwise, the procedure is terminated.

It is to be noted that users of the network need to be able to identify each other by user name and to access local center public keys from the local center to which they are attached. Of course, a user U_i could submit the other user's name U_j to a name server and obtain, from the name server, along with the network address of user U_j , the public keys for the local center to which U_j is attached.

If ID_i'' and ID_i match correctly, then U_j transmits S_j and ID_j to U_i . Upon receiving S_j and ID_j from U_j , U_i computes

$$ID_i'' = D_{d_2}(S_i)$$

in the same manner as U_j computed ID_i'' and compares ID_j'' with the received ID_j . If these two values do not match, U_i may either disconnect from the network or retry by resubmitting his/her S_i and ID_i to U_j . If these values do match, U_i extracts Y_j from ID_j and computes the secret common session key K_{ij} shared by U_i and U_j , according to the public-key distribution scheme proposed by Diffie and Hellman [1], as follows:

$$K_{ij} = Y_i^{X_i} \mod N$$

where X_i is the secret information known only to U_i and N is a publicly available large prime chosen by the global service. This computed K_{ij} is the secret session key that will be shared by U_i and U_i for establishing a secure channel.

In order to verify that U_j has successfully obtained the same K_{ij} , and to avoid playback attack from a third party, U_i could use K_{ij} to encrypt a small paragraph of text which contains a time stamp of current time and a sentence, such as

$$C = E_{K_{ij}}($$
"I am U_i want to talk to U_j , current time")

and sends this ciphertext to U_j . U_j can extract Y_i from ID_i , computes

$$K_{ij} = Y_i^{X_j} \bmod N$$

where X_j is the secret information known only to U_j , and then uses K_{ij} to decrypt the ciphertext to

$$D_{K_{ij}}(C)$$
 = "I am U_i , want to talk to U_i , current time"

to thus verify the correctness of K_{ij} . If the decrypted sentence is correct, then a secure channel has been successfully established between U_i and U_j .

III. SECURITY ANALYSIS

There are four possible attacks that we need to discuss in this section. They are the following.

(Attack 1): If an imposter wants to pretend to be U_i and establish a "secret channel" with U_j , then he/she can take the following approach. Since a and N are publicly known information, select a random number X' and generate the corresponding Y' according to the equation

$$Y' = a^{X'} \mod N.$$

Because S_i and ID_i are transmitted in plaintext form, and can be intercepted by wiretappers, the imposter can intercept them, replace Y_i in ID_i by Y' to obtain ID'_i , and then send S_i and ID'_i to U_j . But, upon receiving S_i and ID'_i , U_j first verifies whether S_i and ID_i are correct by computing

$$ID_i'' = D_{d_1}(S_i)$$

and comparing the received ID'_i with the computed ID''_i . Since ID'_i is different from ID''_i , the comparison fails, and the request to establish a "secret channel" between the imposter and U_j is rejected. Thus, this attack fails.

(Attack 2): An imposter may modify ID_i to ID'_i in exactly the same way as in (Attack 1) above, and also modify S_i to S'_i such that $ID'_i = D_{d_i}(S'_i)$. If so, the comparison between ID'_i and ID''_i will succeed. However, since S_i is calculated from the equation

$$S_i = E_{e_1}(ID_i)$$

and e_1 is known to LC_1 only, computing S'_i from ID'_i would be extremely difficult without knowledge of e_1 .

(Attack 3): Since S_i and ID_i can be intercepted by an intruder during transmission, people other than U_i who have obtained S_i and ID_i can also send these two values to someone else, claiming to be U_i . However, since they lack knowledge of the personal secret key X_i , they still cannot obtain the correct session key.

(Attack 4): If an imposter wants to pretend to be U_i , and attempts to establish a "secret channel" with U_j , he/she could intercept not only S_i and ID_i , but also the encrypted paragraph

$$E_{K_{ii}}$$
 ("I am U_i , want to talk to U_i , current time")

and play it back whenever he/she chooses. But because of the time stamp associated with the ciphertext and the lack of knowledge of K_{ij} , the ciphertext containing a correct time cannot be calculated correctly by the imposter, thus this attack will fail.

IV. SUMMARY AND CONCLUSION

A new, authenticated public-key distribution scheme for a distributed computer network is proposed. We believe that this scheme has the following merits.

- 1) The shared, secret key can be authenticated by both users and be distributed successfully without the help of a globally trusted centralized KDC. This is advantageous because: a) for a truly distributed, large-scale network, such a KDC may not exist, and b) the security of a centralized key distribution scheme totally depends on the security of the centralized KDC; compromise of the KDC endangers all network security [3].
- 2) Even though the proposed scheme utilizes public-key cryptography as the basic mathematical tool, it effectively eliminates the large public-key file management problem. There is no need for each network user to keep a copy of the global public-key file. Instead, each individual local center needs to keep a public-key file for all local centers for authentication purposes. We also require a

user registration process and encourage the use of a local storage device.

- 3) A "secure channel" is said to be established between users A and B if these two users have successfully obtained the common secret session key. With our scheme, such a key can be obtained only by A and B (thus not exposing it to other users or to local centers). We believe this feature is more advantageous compared with Birrell's scheme in which this secret key is also exposed to certain intermediate trusted directories.
- 4) Similar to Simmon's scheme [14], in our scheme, each user holds a secret number, and this number is never transmitted directly through the network. Not even the local center has any knowledge of this number. Thus, the probability of having it exposed is kept to a minimum.
- 5) With this scheme, users can be added onto or deleted from the network freely without degrading the performance of the scheme. Only when there is a new local center added onto or an old local center withdrawn from the network must some update work be done. For example, when a new LC is created in the network, all local center verification tables need to be updated; this can be accomplished by broadcasting the public key of this new LC to all the other LC's. Finding an efficient way for authenticated key distribution in a large-scale, truly distributed network is a difficult task. Our proposed scheme is one of many efforts towards finding a possible solution. We hope to see more constructive work in this field in the near future.

REFERENCES

[1] W. Diffie and M. Hellman, "New directions in crytography," *IEEE Trans. Inform. Theory*, vol. IT-22, pp. 644-654, Nov. 1976.

- [2] L. M. Kohnfelder, "Towards a practical public-key cryptosystem," B.S., M.I.T., Cambridge.
- [3] R. C. Merkle, "Protocols for public key cryptosystem," in *Proc. IEEE Symp. Security and Privacy*, 1980, pp. 122-134.
- [4] A. D. Birrell, B. W. Lampson, R. M. Needham, and M. D. Schroeder, "A global authentication service without global trust," in *Proc. IEEE Symp. Security and Privacy*, 1986, pp. 223-230.
 [5] A. Shamir, "Identity-based cryptosystems and signature schemes,"
- [5] A. Shamir, "Identity-based cryptosystems and signature schemes," in Adv. in Cryptol.—Crypto'84, Santa Barbara, CA, Aug. 1984, pp. 47-53.
- [6] E. Okamoto, "Proposal for identity-based key distribution systems," Electron. Lett., vol. 22, pp. 1283-1284, 1986.
- [7] K. Koyama and K. Ohta, "Identity-based key conference key distribution systems," in Adv. in Cryptol.—Crypto'87. New York: Springer-Verlag, 1987, pp. 175-184.
- [8] E. Okamoto, "Key distribution systems based on identification information," in Adv. in Cryptol.—Crypto'87, Santa Barbara, CA, May 1987, pp. 194-202.
- [9] S. Tsujii and T. Itoh, "An ID-based cryptosystem based on the discrete logarithm problem," *IEEE J. Select. Areas Commun.*, vol. 7, pp. 467-473, May 1989.
- [10] E. Okamoto and T. Tanaka, "Key distribution system based on identification information," *IEEE J. Select Areas Commun.*, vol. 7, pp. 481-485, May 1989.
- [11] G. J. Popek and C. S. Kline, "Encryption protocols, public key algorithms, and digital signatures in computer networks," in Foundations of Secure Computation, pp. 133-153.
- [12] R. M. Needham and M. D. Schroeder, "Using encryption for authentication in large networks of computers," Commun. ACM., vol. 21, pp. 993-999, Dec. 1978.
- [13] R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining digital signatures and public-key cryptosystems," *Commun. ACM.*, vol. 21, pp. 120-126, Feb. 1978.
- [14] G. J. Simmons, "An impersonation-proof identity verification scheme," in Adv. In Cryptol.—Crypto'87, Aug. 1987, pp. 211–215.
- [15] D. E. R. Denning, Cryptography and Data Security. Reading, MA: Addison-Wesley, 1982.