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Abstract: Most existing cryptosystem designs 
incorporate just one cryptographic assumption, 
such as factoring or discrete logarithms. These 
assumptions appear secure today; but, it is pos- 
sible that efficient algorithms will be developed in 
the future lo break one or more of these assump- 
tions. It is very unlikely that multiple crypto- 
graphic assumptions would simultaneously 
become easy to solve. Enhancing security is the 
major objective for cryptosystems based on multi- 
ple assumptions. K.S. McCurley proposed the first 
key distribution system based on two dissimilar 
assumptions, both of which appear to be hard. In 
his design, the sizes of the security parameters for 
these two assumptions are quite different. The 
modulus to satisfy the proper security requirement 
for one assumption is too large for the other 
assumption. The side effects are (1) the public key 
size is larger than the original Dime-Hellman key 
distribution scheme; and (2) more computation 
time is required. In the paper, the authors pro- 
pose a cryptographic system design based on the 
two popular assumptions: factoring and discrete 
logarithms. Breaking this system is computa- 
tionally infeasible because it requires (1) solving 
the Dime-Hellman discrete logarithm problem in 
a subgroup of Z ; ,  where p = 2p‘ x q’ + 1 and p’, 
q’ are two large primes, and (2) factoring (p - 1)/2 
into two large primes, p‘ and q’. Thus, in the pro- 
posed system, it is possible to choose the same size 
of security parameter for these two assumptions 
and, therefore, to maintain the efficiency of the 
implementation. 

1 Introduction 

In 1976 Diffie and Hellman [I]  proposed the concept of 
the public-key cryptosystem to solve the secret communi- 
cation key distribution problem. Since then several 
public-key cryptosystems [2-61 which can provide both 
digital signature and encryption have been proposed. 
One common feature among all these systems is that the 
security of each cryptosystem is based on just one crypto- 
graphic assumption, such as factoring or discrete 
logarithms. According to Reference 7, the solution of the 
discrete logarithm requires O{exp [const. J(log p log 
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log p)]} integer multiplication, where p is the modulus. 
For further information on the current state of the art in 
computing discrete logarithms, see References 8 and 9. 
According to Reference 10, the asymptotic running times 
for many integer factorisation algorithms are given in the 
form of Ojexp [const. J(log n log log n)]}, where n is the 
product of two large primes. For more information on 
factoring, see References 11 and 12. Recent advanced 
techniques imply that the computational difficulties of 
these two assumptions are almost the same. Thus, in 
order to achieve the same security level for these two dif- 
ferent assumptions, the size of the modulus p for the dis- 
crete logarithm problem and the size of modulus n for the 
factoring problem should be the same. 

Although these cryptographic assumptions appear 
secure today, it is still very likely in the future that a 
clever cryptanalyst will discover an efficient way to factor 
integers or to compute discrete logarithms. Thus, cryp- 
tosystems based on the corresponding assumption will 
surrender their security. To enhance security is the major 
motivation for developing cryptosystems based on multi- 
ple cryptographic assumptions. This is because of the 
common belief that it is very unlikely that multiple 
cryptographic assumptions would simultaneously 
become easy to solve. 

In 1988 K.S. McCurley [13] proposed the first key 
distribution system based on two dissimilar assumptions, 
both of which appear to be hard. Instead of using an 
arithmetic modulus p that is a prime (as in the Diffie- 
Hellman key distribution scheme), the distribution 
scheme in Reference 13 uses a modulus n that is a 
product of two primes. Breaking the system requires the 
factoring of n into two primes, p and q,  and the ability to 
solve the Diffie-Hellman discrete logarithm problem in 
subgroups of Z;  and Z t  . Thus, it is impossible to select 
proper moduli p and q to achieve the same difficulty for 
these two assumptions. For example, if we select two 
large primes p and q with 512 bits each, in order to 
ensure the difficulty of the discrete logarithm problem in 
subgroups of Z: and Z t ,  the resulting composite 
modulus n = p x q of the factoring problem will become 
1024 bits long. This results in two disadvantages: (1) the 
public-key size will become two times longer than that of 
the original Diffie-Hellman scheme; (2) the time to 
compute a 1024-bit exponentiation is almost eight times 
longer than the time to compute a 512-bit exponentia- 
tion. In 1992 E.F. Brickell and K.S. McCurley [14] pro- 
posed an interactive identification scheme also based on 
discrete logarithms and fsxtoring, but these two assump- 
tions are not as general as the two assumptions stated 
previously. 

The object of this paper is to develop a cryptosystem 
based on two different cryptographic assumptions to 
enhance the security, while maintaining the efficiency of 
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the implementation. In other words, one must break the 
RSA and the ElGamal systems simultaneously to break 
our proposed system. Computational time in the pro- 
posed system for encryption /decryption /signature gener- 
ation /signature verification is bounded above by the 
worst case of the RSA and the ElGamal systems ( is  T = 
max {TEIGr TRSA), where TEIG, TRSA, are the computa- 
tional times for the ElGamal scheme and RSA scheme, 
respectively). In Section 2, we propose a public-key dis- 
tribution system based on these two assumptions. Public- 
key encryption scheme and digital signature scheme are 
included in Section 3. 

2 Public-key distribution system based on 
factoring and discrete logarithms 

Each user selects a large prime p = 2p‘ x q’ + 1, where 
p’ = 2p” + 1, 4’ = 24’‘ + 1, and p’, q‘, p“ and q” are also 
large primes, and randomly selects a primitive element 
a mod p and x E [l, p - 11. Then the user computes d 
such that 3 x d mod 4(4(p)) = 1, where $I(.) is the Euler 
totient function, and y = ax mod p .  ( p ,  a ,  y, 3) are the 
public keys (p‘, q’, x, d) are the secret keys. Note that we 
use the exponent 3 as the public key to simplify the 
encryption operation (but not decryption operation). 
Some precautions need to be taken in order to prevent 
flaws [l5]. All these public and secret keys will be used 
for the design of the entire cryptosystem. 

Suppose A wants to share a common secret key K,,  
with B during a communication session, where A is the 
initiator. A first obtains B’s public keys ( p , ,  aB, j , ) ,  and 
B has its own secret keys (p,, qb, x,, d,). Then A ran- 
domly selects a secret key k E [l, p ,  - 11 and computes 
K A B  as 

KAB = Y i  mod P E  

Furthermore. A computes 

z ,  = a i  mod p ,  

and 

C = z:  mod ( p ,  - 1) 

and sends C to B. Once E receives C ,  B uses its secrete 
key d, to compute 

z, = CdB mod ( p ,  - 1) 

and uses its secret key x, to obtain K, ,  as 

K , ,  = zy mod p ,  

2. I Discussion 
The security of this proposed scheme is based on factor- 
ing and discrete logarithms. An attacker may access B’s 
public key y , ,  but knowing how to solve discrete 
logarithms can only help the attacker to obtain B’s secret 
key x,. In order to obtain the common session key K, ,  
the attacker also needs to solve the factoring problem to 
obtain B’s secret key d,. On the other hand, the attacker 
needs to solve the factoring problem first to obtain z, 
and then to solve the discrete logarithm problem to 
obtain k. Breaking our system requires solving the Difie- 
Hellman discrete logarithm problem in a subgroup of 
Z : ,  where p = 2p‘ x q’ + 1 and p‘, q’ are two large 
primes, and the ability to factor (p - l)/2 into two large 
primes, p’ and q‘. Thus, in our proposed system, we can 
maintain the same security level for these two crypto- 
graphic assumptions. For example, if we require that p‘ ,  
q’ 3 2256, then the modulus for both discrete logarithms 
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and factoring problems will be at least 512-bit long. The 
computational time for A and B requires almost two 
5 12-bit exponentiations each. This is four times faster 
than the McCurley scheme. 

3 

3. I Cryptosystem 

3.3.1 Phase 1 : Public-key distribution. Suppose A 
wants to send some secret information to E .  First, A 
obtains and authenticates B’s public keys (p,, a,, y,). 
Then A randomly selects a number k from [l, p B  - 11 
with gcd(k, 4(pB)) = 1. According to the public-key dis- 
tribution scheme described previously, a common secret 
key K , ,  can be obtained by A as 

Public-key cryptosystem and signature scheme 
based on factoring and discrete logarithms 

K A B  = Y i  mod PE 
Note here that this common secret key K, ,  shared 
between A and E is also a primitive element mod p ,  
according to the following corollary based on the K. H. 
Rosen theorem 8.4 [16]. 

Corollary I ;  K , ,  is a primitive element mod p ,  . 
k will serve as A’s ‘secret session key’, and the corre- 
sponding K , ,  will become the ‘common secret session 
key’ shared by A and E .  Then A computes 

z A  = a; mod pB 

and 

U = y: mod ( p ,  - 1) 

and sends U to B. 

3.1.2 Phase 2: Encryption. For each message block mi 
in a sequence of message blocks {m,, m,, ..., mi, ...), A 
computes two encryption keys K i ,  I and Ki, , iteratively 
as 

Ki, = Ki. . l ,  , K,,  mod p ,  = K:, mod p ,  
and 

K i ,  , = ~ 2 .  I mod PE 
where K O ,  I = 1. 

The corresponding ciphertext block Ci is computed as 

Ci = mi3 mod p ,  - 1 

and 

Ci = K i ,  Ci mod p B  
The sequence of ciphertext blocks {C,, C,, ... , C i ,  . . .} is 
transmitted to E. 

3.1.3 Phase 3: Decryption: Once E receives U from A,  B 
can use its secret key d, to compute z,  as 

z, = uda mod (p, - 1) 

and use its secret key x, to obtain the common secret 
session key K,, as 

K,,  = zy mod p ,  

and encryption keys K i , l  and K i , ,  as well. For each 
received ciphertext Ci the corresponding message mi is 
computed as 

C; = Ci  K < j  mod p ,  

mi = CIde mod ( p ,  - 1) 
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where K,: is the multiplicative inverse of K i ,  mod p ,  
and 3 x d ,  mod 4(4ps)) = 1. But, according to Fermat’s 
theorem [17, pp. 421, we have 

mod P E  
K ; ;  = a s P ; l - K t . ~  

and K ; :  can be computed without knowing Ki, *, thus 
speeding up the computation. 

3.1.4 Discussion 
(1) In our proposed cryptosystem, one modular expo- 

nentiation is required for enciphering each message block 
(the time required for modular exponentiation with expo- 
nent 3 can be ignored) and two modular exponentiations 
are required for deciphering each ciphertext block. This 
performance is very similar to the original ElGamal 
scheme. However, the ElGamal scheme requires two 
modular exponentiations for enciphering one message 
block and one modular exponentiation for deciphering 
one cipher text block. 

(2) In our proposed cryptosystem, for every message 
block m i ,  there is a corresponding ciphertext block Ci. 
The transmission efficiency is 1 : 1. 

(3) In our system, the unique secret session key k 
chosen by A,  and the unique common secret session key 
K,, shared by A and B, are used throughout the session 
to generate the encryption keys Ki,  and Ki. for i = 1,2, 
. . . . These keys K,, ,  K i .  and Ki. will differ from one 
session to the next if the value of k is different. Hence, k 
should be selected randomly to ensure security. Note that 
since K,,  is a primitive element of GF(p,), we can obtain 
a period of length p ,  - 1 for the encryption keys Ki, 
and K i . 2 .  So, for all practical applications, the period 
length is as long as we want. In other words, within a 
session, even though we use the same k to generate the 
encryption keys Ki, and K i ,  2 ,  these keys differ for each 
message block. 

3.2 Digital signature 
Suppose A wants to sign a message m, where 0 < m < p ,  
- 1. A randomly selects a number k from CO, p, - 13 

with gcd(k, &,)) = 1 and computes 

r = U: mod p ,  

A now solves the congruence 

m’ = ks’ + xAr  mod pa - 1 

for the integer s’ and computes 

s = sldr mod p ,  - 1 

The signature for message m is then the ordered pair 

Upon receiving the set of {m, r, s}, any user can verify 

s’ = s3 mod p ,  - 1 

(r,  SI. 
the signature of message m by computing 

and checking the following equation: 
am’ , - - r”’y2 mod p ,  

3.2.1 Discuss,ion Since r and k - ‘  mod pa - 1 can be 
precomputed offline, the computational time for a 
designer is almost the same as for the RSA scheme. On 

the other hand, since the computational time required for 
modular exponentiation with exponent 3 can be ignored, 
the computational time for a verifier is almost the same 
as for the original ElGamal scheme. Thus, the computa- 
tional time of our proposed scheme is upper bounded by 
the worst case of the RSA and ElGamal schemes. 

4 Conclusions 

We have proposed a public-key cryptosystem design 
based on factoring and discrete logarithms, to enhance 
the security, while maintaining the efficiency of the imple- 
mentation. One must break the RSA and the ElGamal 
systems simultaneously to break our proposed system. 

There are several open problems. Is there any other 
approach that offers the same security as we propose but 
with better performance? Can we design a cryptosystem 
based on other multiple assumptions but with better per- 
formance? Instead of letting each user select his own p ,  p‘ 
and q’, is it possible to allow a trusted key centre to select 
these parameters? 
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