
by impulse (salt and pepper) noise with occurrence rate ranging 
from 10 to 90% were also tested, and the PSNR performance is 
provided in Table 2. 

Table 1: PSNR obtained by different filters for corrupted image 
‘Lena’ 

Noise 
percentage 

Median Median Our 

PSNR PSNR PSNR PSNR 

Noise 

~~~~~ 

percentage MMEM 

Median Median Our 

PSNR PSNR PSNR PSNR PSNR 
(3x3) (5x5) Fuzzy U21 ROM [31 MMEM 

Table 2 PSNR obtained by different filters for corrupted image 
‘Bridge’ 

Conclusions: In this Letter we propose a minimum-maximum 
exclusive mean (MMEM) filter which is robust for removing 
impulse noise. Experimental results show that even if the noise is 
heavy (70’%0), the proposed filter can still work properly and the 
restored image is acceptable. 
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Digital signature for Diff ie-Hellman public 
keys without using a one-way function 

L. Harn 

Indexing term: Public key cryptography 

The author proposes digital signature schemes without using a 
one-way function to sign DEie-Hellman public keys. The 
advantage of this approach is, instead of relying overall security 
on either the security of the signature scheme or the security of 
the one-way function, the security of this proposed scheme is 
based on the discrete logarithm problem. 

Introduction: A one-way function is needed in any digital signature 
scheme. Without using a secure one-way function, a digital signa- 
ture can be easily forged [l, 21. There are some well-known one- 
way hash functions, such as the MD4, MD5, SHA, etc. There 
exists a major difference of security assumptions between digital 
signature schemes and one-way functions. The security assump- 
tions of most signature schemes are based on some well-known 
computational problems, such as the discrete logarithm problem, 
the factoring problem, etc. However, the security of most one-way 
hash functions is based on the complexity of analysing an iterated 
simple function. Since most computational problems are well- 
known and easy to understand, the security of most signature 
schemes can withstand quite a long period of time. However, a 
one-way function may seem very difficult to analyse at the begin- 
ning; but it may turn out to be vulnerable to some special attacks 
later. Thus, in general, the lifetime of one-way functions is shorter 
than that of signature schemes. For example, recent advancement 
of cryptanalysis research has found that MD5 is ‘at the edge’ of 
risking successful cryptanalytic attack [3]. There are two motiva- 
tions of proposing signature schemes without using a one-way 
function. First, instead of relying overall security on the weaker 
assumption between the signature scheme and the one-way func- 
tion, the security of our proposed schemes is based on the discrete 
logarithm problem. Secondly, the overall security can be easily 
understood and analysed. 

Diffie and Hellman [4] proposed the well-known public-key dis- 
tribution scheme based on the discrete logarithm problem in 1976 
to enable two parties to establish a common secret session key 
based on their exchanged public keys. But their original scheme 
can only share one common secret key and did not provide 
authentication for the exchanged public keys. Since them, several 
key exchange protocols [5, 61 to allow two parties to share multi- 
ple secret session keys have been proposed based on the Diffie- 
Hellman public-key technique. In general, these protocols utilise a 
digital signature for each distributed public key to provide authen- 
tication. Since Diffie-Hellman’s public key is obtained by comput- 
ing an exponential function over GFb) and the exponential 
function itself is a well-known one-way function, we propose sig- 
nature schemes without using any additional one-way function for 
signing Diffie-Hellman public keys. In addition, since the Diffie- 
Hellman public key is a random number, our proposed schemes 
are not suitable for signing any given message. 

Digital signature schemes fo r  DifJie-Hellman public keys: Let p be a 
large prime and a be a primitive number in GF(p). Each user 
selects a fixed secret key x E [l, p l ]  and computes a fKed public 
key y = ax mod p ,  where y is signed by one authority. b, a, y }  are 
the user public information. 

A signature scheme uses a fuced secret key to sign a message 
and a verifier uses a signer’s fuced public key to verify the signa- 
ture of a message. In this proposed signature scheme, the message 
itself is a random Diffie-Hellman public key r = ak mod p E [ 1, p 
11 computed by the signer, where k is a secret random integer k E 
[ 1, p-21 privately selected by the signer. 

Now, we use the following model to describe the signing proc- 
ess. The signer uses his secret keys, x and k, to compute the signa- 
ture s which satisfies 

where (a, b, c) are parameters selected from values (r,  s). The veri- 
fication equation is determined accordingly as 

az = bk + c mod 0 ( p )  

ya = ~~a~ mod p 

No. 2 125 

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 14:42 from IEEE Xplore.  Restrictions apply.



In the following, we will discuss the general form of the above 
signature equation to satisfy security considerations. 
(i) Since x and k are two secret numbers and the verifier does not 
know these two values, x and k should be treated as in different 
terms in the above equation. Otherwise, if we combine these two 
secret parameters together (i.e. for example, if xk = r f s  mod 0@), 
then y” = ar+s mod p or ri = a’+‘ mod pj, the verifier cannot verify 
the signature. 
(iij To claim that s is a signature for the random public key r, the 
random public key r should be included in the signature equation 
and can be included in any parameter of (a, b, c). 
(iii) To provide a digital signature, s should also be included in 
any parameter of (a, b, c). Thus, there are four parameters, (x, k, 
r ,  s), in the equation. 
(iv) For security reasons, c cannot be zero. For example, if T X  = sk 
mod W@), it is easy to forge a signature for a random public key 
to satisfy the verification y‘ = rs mod p .  This can be shown by ran- 
domly selecting a U E [l, p-21 and computing Y‘ = yu mod p .  The 
forged signature for the random r‘ is s’ = yUzc1 mod p-1. 
(v) For security reasons, r cannot be combined with s. For exam- 
ple, if x = k + YS mod @@), it is easy to forge a signature for a 
random public key to satisfy the verification y = rars mod p .  This 
can be shown by randomly selecting an T’ E [l ,  p-21 and comput- 
ing T” = ycr?‘ mod p .  The forged signature foi- the random T” is s” 
= r’r’’-l m o d p l .  
(vi) The signature equation contains four parameters. Two param- 
eters, (r,  sj, are public information. But, x is the fixed secret key of 
the signer and k is a random secret value for each random public 
key. Since the number of secret parameters is always one larger 
than the number of linear equations available to the attacker, the 
signature scheme is secure based on the discussion in the original 
ElGamal paper. We list all possible signature variations in Table 1. 

(ij 
(iij 
(iii) 
(iv) 

Signature 
Equation Verification 

YX = k+s mod@@) 
sx = k+r mod0@) 
x = rk+s mod@@) 
x = sk+r mod0b)  

yr  = ras modp 
yA = rar modp 
y = rias modp 
y = rsar modp 

Discussion: 
(ij Among all signature schemes we have listed in Table 1, the sig- 
nature generation only requires us to solve a linear equation. The 
signature verification requires two modular exponentiations. In 
schemes (i) and (iii), the signature s can be solved without comput- 
ing the inverse. More important than the efficiency is that these 
signature schemes are not relied on any one-way hash function. 
(iij The techniques used in the DSA [7] and the Schnorr scheme [SI 
can also be applied to all schemes in the table to shorten the signa- 
ture and to speed up computation. 

5 ARAZI, A : ‘Integrating a key cryptosystem into the digital signature 
standard’, Electron. Lett., 1993, 29, (ll), pp. 966-967 

6 NYRERG, K., and RUEPPEL, R A : ‘Message recovery for signature 
schemes based on the discrete logarithm problem’. Proc. Eurocrypt 
’94, May 1994, pp. 175-190 

7 ‘The digital signature standard’, Comm. ACM, 1992, 35, (7), pp. 
36-40 

8 SCHNORR, C.P.: ‘Efficient identification and signatures for smart 
cards’. Advance in Cryptology - CRYPT0’89, Santa Barbara, 20- 
24 Aug. 1989, (Springer-Verlag), pp. 239-252 

Optimum source-to-channel assignment 

A.K. Khandani 

Indexing tew” Channel coding, Source coding 

The problem of the optimum assignment of a set of source 
symbols to a set of channel symbols is expressed in terms of a 
quadratic assignment problem (QAP). Numerical examples are 
presented for the assignment of a scalar quantiser to a binary 
channel. 

Consider a communication system aimed at transmitting a source 
S through a channel C. The source S has T symbols, s,, i = 0, ___, 
T-1, where s, occurs with probability P,(ij. The distortion between 
s,, s, E S is equal to Dp(i,j). The channel C has T symbols c,, i = 0, 
..., T-1. The probability of receiving a channel symbol j condi- 
tioned on transmitting a channel symbol i is equal to: Pc(j  i). The 
objective is to select a one-to-one mapping 5 between the set of the 
source symbols and the set of the channel symbols to minimise the 
end-to-end average distortion, namely 

We assign a T dimensional binary vector to each symbol of the 
source at the channel input. The vector corresponding to the ith 
symbol is composed of the elements: [x,,, j = 0, ..., T-11. If the ith 
source symbol is assigned to the Ith channel symbol, we set xrl = 1 
for j = 1 and xtl = 0 for j # 1. Using these notations, the assign- 
memt problem is formulated as 

T-1 T-1 T-1 T-1 

z=O j = O  k=O 1=0 

subject to: zt3 E (0, 1) z,j = 0, ..., T - 1 (1) 
T-I - 

x , ~  = 1 i = 0,  ..., T - 1 
3=n 

T-I 

Z Z J  = 1 j = 0, ..., T - 1 
t=n Conclusion: We have proposed signature schemes which are espe- 

cially suitable for signing the Diffe-Hellman public keys. Using 
these schemes to sign Diffie-Hellman Public keys, they do not 

ture generation and signature verification. 

The optimisation scheme in eqn, is equivalent to a standard 
problem of discrete optimisation known as a quadratic assignment 

problems with mutual interaction between facilities. O M S  are 
require any one-way hash function and are efficient in signa- problem (QAP) [3, 41. This problem arises in discrete locational 
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known to be NP-hard and are generally very difficult to solve. The 
exact solution methods are mainly based on either finding an inte- 
ger programming formulation for the problem or using the 
method of the branch and bound. There are also numerous works 
discussing different heuristic approaches to approximate the opti- 
mum solution [3, 41. 

Tables 1 and 2 contain numerical results for the optimum 
assignment of the levels of a scalar Max quantiser [5] to the sym- 
bols of a binary channel. The distortion measure is the mean 
square distance. The corresponding QAP is solved using the 
branch and bound algorithm. A supplementary technique (known 
as reduction) is used which allows us to decompose the objective 
function of the QAP as the sum of a linear term and a quadratic 
term. The main strategy in computing lower bounds for a QAP (as 
required in the branch and bound method) is based on minimising 
the linear term and replacing the quadratic term by a lower bound 
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