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Abstract: A subliminal channel is a covert 
communication chsnnel to send a message to an 
authorised receiver; this message cannot be 
discovered by any unauthorised receiver. There 
are some applications that can take advantage of 
this by hiding secr1:t messages in this subliminal 
channel. For example, a credit card provider can 
hide the card holder’s credit history and credit 
limit in a digital signature for an issued credit 
card. Simmons had found that El Gamal-type 
digital signature schemes can be easily used to 
establish a subliminal channel owing to their low 
information rate. Simmons had also found that in 
all broadband sub liminal channels devised thus 
far the receiver needs to know the transmitter’s 
secret signing key; subliminal channels that do 
not require the trs nsmitter to entrust its secret 
key to the subliminal receiver are generally 
narrowband. This limits the practical usefulness 
of the subliminal channel. The paper shows how 
to construct a digital signature scheme with a 
broadband sublimlnal channel that does not 
require the subliminal receiver to share the 
transmitter’s secret signing key. The subliminal 
channel can be constructed in either p-channel or 
q-channel, where p and q are two large primes as 
used in the RSA scheme. To any outsider, forging 
a legitimate signature requires solving both the 
factoring problem and the discrete logarithm 
problem. Implementation of the signature scheme 
based on the Lucas function is proposed to 
achieve greater efficiency. 

1 Introduction 

The security of El Gamal’s signature scheme [l] is 
based on solving t t  e discrete logarithm problem. 
Assume that the El Gama1 scheme requires p bits of 
security against forgery and a bits are used to 
communicate a signature. Since a > p, a-p bits are 
potentially available for subliminal communication. 
Simmons [2] defined that if the subliminal channel uses 
all, or nearly all, of the a-p bits, it is said to be 
broadband; otherwise it is said to be narrowband. 

The digital signaturl: on a passport can be used by 
customs agents to authenticate the passport holder. 
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The message in the subliminal channel can also tell 
customs agents that the passport holder is a known 
terrorist, smuggler, etc. The digital signature on a 
driver’s license can be used by shop tellers to verify the 
bearer’s identity. The message in the subliminal channel 
can also tell law enforcement agents the bearer’s 
driving record, traffic violation history, etc. The digital 
signature on a credit card can be used by any 
commercial company to verify the customer’s identity. 
The message in the subliminal channel can also tell 
verifiers the customer’s credit limit, payment history, 
etc. Thus, there are many potential applications which 
can benefit from the subliminal channel. 

Simmons [3] described several narrowband 
subliminal channels that do not require the subliminal 
receiver to share the transmitter’s secret signing key. In 
Eurocrypt ’93, Simmons [2] describes a broadband 
subliminal channel that requires the subliminal receiver 
to share the transmitter’s secret signing key. This 
requirement limits the practical usefulness of the 
subliminal channel. Due to this requirement, the 
customs agent requires to know the secret signing key 
of the passport agency, the law enforcement agent 
requires to know the secret signing key of the driver’s 
license bureau, the shop teller requires to know the 
secret signing key of the credit card issuer. In other 
words, the subliminal receiver shares the same 
capability with the transmitter. In general, this 
requirement cannot be accepted for most applications. 
There are three entities with different knowledge in 
these applications. The signature signer knows all 
secrets. The subliminal receivers know a partial secret 
to recover subliminal messages; but they cannot forge 
any signature. The outsiders know only the public key 
of the signer to verify any signature. 

In this paper, we show how to construct a digital 
signature scheme with a broadband subliminal channel 
that does not require the subliminal receiver to share 
the transmitter’s secret signing key. The subliminal 
channel can be constructed in either p-channel or q- 
channel, where p and q are two large primes as used in 
the RSA scheme. To any outsider, forging a legitimate 
signature requires to solve both the factoring problem 
and the discrete logarithm problem. Thus, this 
signature scheme is more secure in comparison with 
most schemes in that the security relies on just one 
cryptographic assumption. We also discuss variations 
of this scheme to improve security as well as efficiency. 

2 Proposed digital signature scheme with 
broadband subliminal channel 

Assume that there are two ‘disjoint’ subliminal 
channels, p-channel and q-channel, in the signature 

387 IEE  Pro?.-Comput. Digir Tech.. Vol 144, No. 6, Novrmher 1997 

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 14:43 from IEEE Xplore.  Restrictions apply.



scheme. We call them disjoint channels because we 
assume that each subliminal receiver can only belong to 
one of these two channels and receivers in these two 
channels do not exchange secrets with each other. The 
signature signer needs to select four large primes p ,  q, 
p’ and q’, where p = 2p’ + 1 and q = 2q’+ 1, and two 
secret keys x, and x, and xq E [1, q ~ I], where xu and 
x, are even integers, for these two disjoint subliminal 
channels. The signer needs to compute n = p q  and to 
select a public parameter a E [l ,  n ~ 11 with order (p - 
l)(q - 1) in mod n operation. The public key used to 
verify any signature is y which is the common solution 
that satisfies both equations yp  = y mod p and y, = y 
mod q, where y, = oclc. mod p and y, =, axq mod q. We 
denote y as y = CRT(yp and yq; p ,  q) (i.e., CRT stands 
for the Chinese remainder theorem). The signer also 
needs to compute a secret signing key x = CRT(x,, x,; 
$(p),$(q>), where $(p) = 2p‘ and @(y) = 2q’. Since 
gcd(@(p), $(q)) = 2, by restricting xp and xy to even 
integers one can guarantee that there are two solutions 
of CRT(x,, xy; $(p), @(q)); one can always select the 
smaller one as the secret signing key x. Since each 
subliminal receiver needs to know either p or q to 
discover the subliminal message, these two secret 
primes cannot be kept secret from subliminal receivers. 
Although each subliminal receiver knows how to factor 
n, this information is not revealed to any outsider. 
Secret key f o r  the signer: (p, q, x,, xq, x> 
Secret key fo r  the q-channel receiver: (p, xu> 
Secret key f o r  the q-channel receiver: (4, x,) 
Public key fo r  outsider: (a, n, y )  

Signature generation: For the sake of simplicity, we 
assume that the signer wants to sign m, where 1y2 is the 
one-way hash result of a meaningful message. We 
assume that there are two subliminal messages, mu E 

[ 1, p - 11 and m, E [I ,  q - 11, where mu and my are even 
integers (i.e. the least significant bit is zero), needed to 
be hidden in p -  and q- channels, respectively. The 
signer needs to compute m,,, = CRT(m,, m,; $(PI, @(q)), 
rp = f l p  mod p and r ,  = Pq mod q. Again, there are 
two solutions of m,, = CRT(m,, m,; $(p), $(q)) and we 
select the smaller solution as mpq. Then the signer uses 
the Chinese remainder theorem to compute r = 
CRT(r,, 7,; p ,  4). The signer uses the secret signing key 
x to solve the equation rmx = m,, + s mod $(n), where 
@(n) = 4p‘ q’ 3 s = rmx - m,, mod @(n). The signature 
of m is ( r ,  s). 

Signature verification: The signature ( r ,  s) for m can 
be verified using the public key (a, n, y )  by checking 
whether yYm = roc’ mod n. 

Theorem: If y“ = rcP mod n, then ( r ,  s) is the valid 
signature for m. 

Proof: Since the signature ( r ,  s) for m satisfies 

rm~7: = mpq + s mod q5(n) 

rmxp = mp + s mod $ ( p )  
then 

and 

rmxq = mq + s mod $ ( q )  

y im = rPas m o d p  

yim = rqaS mod q 

Thus, 

and 
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Since y = CRTk,, and y,; p ,  q),  and I = CRT(r,, Y,; p ,  
q), one can obtain 

vrm = TC? modn 
Message recovery in subliminal channels: The p-chan- 

ne1 receiver uses the secret key (p, xu) to compute my = 
rmx, ~ su mod @@), where s,, = s mod @(p). Similarly, 
the q-channel receiver uses the secret key (4, x,> to 
compute m, = rmx, ~ sq mod $(q). 

Discussion: 
For each subliminal-channel receiver, since p-  and q- 

channels are disjoint and thus each receiver knows 
either xu or x,, it needs to solve the discrete logarithm 
problem to obtain the other secret. In our signature 
scheme the subliminal receiver does not have the same 
capability as the signer. 

For any outsider, to forge a signature it needs to 
solve both the factoring and the discrete logarithm 
problems. Thus, this signature scheme is more secure in 
comparison with most schemes in that the security 
relies on just one cryptographic assumption. The secu- 
rity of this proposed signature scheme can be found in 

This proposed scheme can hide any message in sub- 
liminal channels. In addition, the message can be dis- 
covered by the subliminal receiver without computing 
any multiplicative inverse. In [4], there is one other var- 
iation of the El Gama1 signature scheme, ( r  + m)x = k 
+ s mod $(n) @ Y’’+’~ = r @  mod n which can provide 
the same result. 

In the scheme we assume that p -  and q- channels are 
disjoint. This assumption differentiates the capability 
between the signer and the subliminal receivers. If it is 
impossible to enforce this assumption in the practical 
application, one may just use a single subliminal chan- 
nel to hide the secret message. Thus, it is impossible for 
subliminal receivers to obtain both secrets xp and x, of 
these two channels simultaneously. There is one alter- 
native approach that can cause the subliminal receiver 
to have difficulty in forging any signature. Instead of 
using p -  and q- channels, we create a new subliminal 
channel. We call it the r-channel. The signer needs to 
select one more prime r .  The size of this prime can be 
much smaller than either p or q. The secret key for the 
r-channel is x,. E [I ,  r ~ I]. The public key for any sig- 
nature is (n,  y>, where n = pqr and y = CRT(yp, y,, yr;  
p,q, r).  The signer uses the same approach to hide mes- 
sage m, in the r-channel. The subliminal receiver needs 
to know the secret key x, to discover the message. 
Although this small prime r can be factored out easily 
from n, the other factoring problem is still based on the 
size of the product of two large primes p and q. Any 
outsider or subliminal receiver has to solve both the 
factoring problem and the discrete logarithm problem 
to forge any signature. 

3 
broadband subliminal channel 

[41. 

Modified Lucas-type signature scheme with 

Recent advanced techniques imply that the 
computational difficulties of solving the factoring 
problem in Z, and solving the discrete logarithm in Zu 
are almost the same. Thus, to maintain the minimum 
security level for the scheme proposed in Section 2, the 
size of the modulus p for the discrete logarithm 
problem should be determined first. Then, the size of 
modulus n for the factoring problem will be too large. 
McCurley [5] proposed the first cryptosystem based on 
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these two assumptions. However, this design results in 
two disadvantages: larger key size; and longer 
computation time. Since the computational difficulty 
for solving the discrete, logarithm in Zp2 is much harder 
than that in Zp [6] it is possible to reduce the difference 
between security levels if we build our scheme based on 
solving the discrete logarithm in Zp2 and solving the 
factoring problem in 2,. This approach can maintain 
the efficiency of the implementation. Since Lucas-type 
cryptosystems can incorporate the factoring problem in 
Z, and the discrete lo,garithm problem in Zp2 together 
in an efficient way, we: suggest modifying the signature 
scheme to one based on the Lucas function. 

A Lucas sequence can be represented as V = { V,},,, 
which elements are given by 

with i: E Z,, V, = 2, and V, = 5. A Lucas sequence in 
Z, is a second-order linear recurring sequence over Z, 
with the minimal polynomial Ax) = x2 - &t + 1 and 
initial state (Vo, V I )  == (2, 8. Let a and ocl be two 
roots of the minimal polynomial Ax). Then V,‘(t) = d’ 
+ i x k .  

Horster et al. [7] proposed a Lucas-type signature 
scheme in 1995. As a result of their scheme the signa- 
ture generation (which requires one evaluation of 
Lucas function) and the signature verification (which 
requires three evaluations of a Lucas function) are 
slightly less efficient than that of the original El Gamal 
signature scheme over GF@). For more information on 
the Lucas-type signature scheme, see [7]. 

System setup: The signer selects four large primes, p ,  
q, p’ and q’, where p = 2p’ - 1 and q = 2q’ ~ 1, and 
computes n = pq. Then select an irreducible polynomial 
Ax) = x2 ~ ex + 1, whereflx) is an irreducible polyno- 
mial over GF(p) and GF(q). Instead of using a as a 
public parameter, here the signer publishes 5. The pub- 
lic key used to verify any signature is y which is the 
common solution that satisfies both equations y, = y 
mod p and yq = y mod q, where y, = V,,(Q mod p and 
y4 = Vxq(a mod q. In other words, y = CRT(y,, yq; p ,  
q)  and x = CRT(x,, x((; p + 1, q + I). The secret keys 
and public keys for the signer, subliminal receivers and 
outsiders are the same as in Section 2. 

Signature generation: Assume that there are two sub- 
liminal messages mp E [ l ,  p ]  and mq E [l ,  q] needed to 
be hidden in p-  and q- channels, respectively. The 
signer needs to compute r,, = V,,(Q mod p and rq = 
V,,(D mod q. Then signer uses the Chinese remainder 
theorem to compute mpq = CRT(m,, mq; p + 1, q + 1) 
and r = CRT(r,, r,; p + 1, q + 1). The signer uses the 
secret key x to solve the equation rmx =mpq + s 
mod (p + l ) (q  + I )  =+ s = rmx - m,, mod (p + l)(q + 1). 

Signature verfication: The signature ( r ,  s) for yy1 can 
be verified using the public key (5, n, y )  by checking 
whether r2 + + Vx?(o = rVmr(y)Vx(5> + 4 mod n. 
The correctness of this verification can be easily 
checked according to Theorem 1 in [7].  

Message recovery in subliminal channels: The p-chan- 
ne1 receiver uses the secret key (p, xp) to compute mP = 

Vj = (Vj-1 -- V k - 2 ,  n 2 2 ,  in 2, 

rmx, - sp mod (p + 1). Similarly, the q-channel receiver 
uses the secret key (q,  xq) to compute m, = rnzx, - sq 
mod (q  + 1). 

Discussion: The signature verification requires two 
evaluations of a Lucas function, which is one less than 
the scheme proposed in [7]. From [4], the following sig- 
nature generation also requires just two evaluations for 
verification: 
(r  + m)z = k + s mod +(n) 

r2 + v;+?“ (Y) + V,” (0 = rvm+?“ ( Y ) K  ( E )  + 4 mod 
Breaking this system is not computationally feasible 

because it requires: factoring n into two large primes, 
and solving the discrete logarithm problem in two 
subgroups of Zp2 and Zq2. For example, if we select 
two large primes p and q with 614 bits each, their 
product is 1228-bits long. According to [6], the 
difficulty of solving the discrete logarithm problem in 
the subgroup of Zp2, with a 614-bit prime p ,  is 
equivalent to the difficulty of factoring a 1024-bit 
composite integer. Thus, in this proposed scheme it is 
possible to reduce the difference between security levels 
for these two assumptions and maintain the efficiency 
of the implementation. 

4 Conclusion 

We have proposed a digital signature scheme with a 
broadband subliminal channel. The unique feature of 
the scheme is that the subliminal receiver does not 
require to share the sender’s secret signing key. In other 
words, the sender does not need to completely trust the 
receiver. The security of the scheme is based on two 
different assumptions. Since the signer shares only a 
partial secret with the subliminal receiver, the sublimi- 
nal receiver still has to solve one security problem to 
forge a signature. The efficiency of the basic scheme 
can be improved if we construct the proposed scheme 
on a Lucas function. 
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