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if we allow a little bit more computational effort with(k) = &'/,
then the proposed scheme has a complexity' ef O(k - k'/) and

A = O(k), and a redundancy of Public-Key Cryptosystems Based
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= 2.83-log, k + O(log log ). Guang Gong and Lein Harn

This is definitely better than the redundancy of the method in

[10]. Finally, note that if the balanced code used in step S1 of ) ) . .
the encoding algorithm is optimal (thus requiring approximatel Abstract—The cryptographic properties of third-order linear feedback
g alg p a g app ¥hift-register (LFSR) sequences over GFp) are investigated. A fast

0.5 log, k redundant bits) then the redundancy of the proposed coglgimputational algorithm for evaluating the kth term of a characteristic
will be sequence of order3 is presented. Based on these properties, a new
public-key distribution scheme and an RSA-type encryption algorithm
N(k)—k=2.51log, k+ O(log log k). are proposed. Their security, implementation, information rate, and
computational cost for the new schemes are discussed.
Currently, the most efficient way to realize optimal balanced codes

s by using an enumerative encoding technique 5], [7, p. 117] whigh "% Tine.~Chreciertc seduence, i fe Tod sxerson,
requiresT = O(k”) bit operations andd = O(k”) bits. Thus at Rrsa-type encryption.
present, the use of optimal balanced codes will result in quite high
complexity.
I. INTRODUCTION
ACKNOWLEDGMENT With the rapid development of Internet applications, information
. . ) security in today’s world is more important than that in any previous
The aut_hors wish to thank the anonymous reviewers for their Mag)as. Designing cryptosystems that meet requirements of communi-
valuable inputs. The proof of the nonexistence of the systemafigiion handwidth, information rate, computational speed, and various
¢-OSN code with rate greater thar2 was given by Reviewer A.  gocyrity strategies has become a very challenging task for researchers.
In the most widely used modern cryptosystems, such as the RSA
[18], the Diffie—Hellman public-key distribution scheme [3], the

[1] S. Al-Bassam and B. Bose, “On balanced codéBFE Trans. Inform. ElGamal cryptosystem [5], and DSS [16], increasing the size of the

REFERENCES

Theory vol. 36, pp. 406-408, Mar. 1990. modulus is necessary in order to strengthen their security.
[21 —, “Design of efficient balanced codedEEE Trans. Comput.yvol. From the point of the linear feedback shift-register (LFSR) se-
43, pp. 362-365, Mar. 1994. guences, the exponential function which used in the RSA encryption,

[3] B. Bose and T. R. N. Rao, “Theory of unidirectional error correctt

ing/detecting codes,|EEE Trans. Computvol. C-31, pp. 23-32, June he Diffie-Hellman (DH) public-key exchange scheme [3], and the

1982. ElGamal digital signature scheme is a first-order LFSR sequence
[4] B. Bose, “On unordered codes|EEE Trans. Comput.vol. 40, pp. over GRp) or Z,, wheren is a product of two prime numbers.
125-131, Feb. 1991. In the literature, there is another family of public-key cryptosystems

[5] T. M. Cover, “Enumerative source encodingEEE Trans. Inform. <imi i ;
Theory vol. IT-19, pp. 73-77, Jan. 1973, similar to RSA, DH, and ElGamal public-key cryptosystems, which

[6] K. A. S. Immink, “Spectrum shaping with DGconstrained channel ~ Manuscript received March 8, 1998; revised October 15, 1998.

codes,”Philips J. Res.vol. 40, pp. 40-53, 1985. G. Gong was with the Communication Sciences Institute, University of
[71 ——, Coding Techniques for Digital RecordersLondon, U.K.: Southern California, Electrical Engineering Systems, EEB#500, Los Angeles,
Prentice-Hall, 1991. CA 90089-2565 USA. She is now with the Department of Combinatoris

[8] R. Karabed and P. H. Siegel, “Matched spectral-null codes for partisdnd Optimization, University of Waterloo, Waterloo, Ont., Canada N2L 3G1
response channelslEEE Trans. Inform. Theorwol. 37, pp. 818-855, (e-mail: ggong@cacr.math.uwaterloo.ca).

May 1991. L. Harn is with the Department of Computer Networking, University
[9] D. E. Knuth, “Efficient balanced codes|EEE Trans. Inform. Theory of Missouri-Kansas City, Kansas City, MO 64110-2499 USA (e-mail:
vol. IT-32, pp. 51-53, Jan. 1986. harn@cstp.umkc.edu).

[10] R. M. Roth, P. H. Siegel, and A. Vardy, “High-order spectral-null Communicated by D. R. Stinson, Associate Editor for Complexity and
codes—Constructions and bound$£EE Trans. Inform. Theoryvol.  Cryptography.
40, pp. 1826-1840, Nov. 1994. Publisher Item Identifier S 0018-9448(99)06026-5.

0018-9448/99$10.00 1999 IEEE

Authorized licensed use limited to: University of Missouri System. Downloaded on March 23, 2009 at 14:36 from IEEE Xplore. Restrictions apply.



2602 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

are called the Dickson polynomial scheme [13]-[15] or LUC [20], Remark: Let f~'(z) = 2® — b2® 4+ ax — 1. Thenf~'(z) is the
[21], respectively. The mathematical function used in this family afciprocal polynomial off(z) and {s_«(a, b)} is the characteristic
the public-key cryptosystems is the second-order LFSR sequeseguence oveF generated by ~'(z). We also call{s_(a, b)} the
over GF(p) or Z, with a special initial state. This kind of LFSR reciprocal sequence dfsx(a, b)}.
sequences areo§et constani8]. We will give their deflnm_on in Lemma 2: Let f(x) = #* — az? + be — 1 be a polynomial over
Section Il. (Note: throughout of this correspondence, we will use tr}e d lets be the ch teristi ted Th
term LFSR sequences over GH or Z, instead of linear recurring fo‘r zrlll ce)s‘i:t' Z .nteece?;ga(;ﬁgs ic sequence generated (by. Then
sequences over Gp) or Z,, since the term of initial state is related positive integ ¢
to an LFSR.) si(sela, b), s—c(a, b)) = spe(a, b). 5)

In this correspond_ence,_we will explore to construct publlc-key Proof From Lemma 1
cryptosystems by using third-order LFSR sequences ovepGBr )
Z,. First, we will investigate the cryptographic properties of third- felz) =(x —al)(@ — ay)(z — ay)
order LFSR sequences and propose a fast computational algorithm to =2 — s.(a, b)a” + s_.(a, D)z — 1. (6)
evaluate the:th term of a third-order characteristic sequence. BaseE

i : : Thus

on these properties, we will construct two public-key cryptographi
algorithms. One is a public-key distribution scheme that can reduces (sc(a, b), s_(a, b)) = ()" + (a5)* + (a§)*
the size of the modulus while speeding up the computation. The =ai* + a5 + a3 = sp.(a. b). QE.D.
security is based on the difficulty of solving the discrete logarithm
in GF(p”). Another one is a RSA-type encryption algorithm whose Note: If we considera andb as variables inf andk as a fixed

security is based on the difficulty of factoring a large composite intgsteger, thens, (a. b) ands_.(a. b) are Waring polynomials. From
ger. We will also discuss their security, implementation, information 2 Theorem 7.46], we have the following fact.

rate, and computational cost. ) o o .
For the theory of LFSR sequences, the reader is refereed to [g]Fact 1: Letk be afixed positive integer. if satisfies k. p'~1) =1,
[12], and for the fundamental theory of finite fields, see [12]. i =1, 2,3, then for anyu, v € F', the system of equations

sp(a,b)=u and s_p(a, b) =v

Il. RHIRD-ORDER CHARACTERISTIC SEQUENCES has a unique solutiotu, b) € F x F. In other wordssy.(a, b) and

Let F = GF(p), wherep is a prime and s_k(a, b) are orthogonal inF" in variablesa andb.

We denote that) = p? + p + 1. A positive integerr is called
a coset leadermodulo @ if r is the smallest integer in the set
{tp’ modQ|i = 0, 1, 2}, wheret is a positive integer.

fl@) =2 —a2® + bao — 1, a,b€F Q)

be a polynomial ovef'. A sequences = {s;} is said to be a third-

order LFSR sequence with a characteristic polynonfiat) if the Theorem 1:Let f(x) = 2 — aa® + ba — 1 be an irreducible

elements of s satisfy polynomial overF of the periodQ = p? +p+ 1 ands = {s}

be the characteristic sequence generatedf (). Let & and &' be

different coset leaders modul@, and bothk and %' are relatively

If s has the initial statess = 3, s1 = a, andss = a> — 2b, then Prime to Q. Then

s = {s;} is calledthe characteristic sequence generated fjy). (5ks S_k) Z (Spra S_pr).

We denotes; ass(a, b) or sx(f), ands ass(a, b) or s(f).
Assume thatvi, a2, a3 are all three roots of () in the splitting

Sk = ask_1 — bsk_o + sk_3, k> 3. 2)

Proof: If (si, s—x) = (s¢s, s_4), then

field of f(z) over F.. According to Newton's formula, the elements frle) =2 —spa” +s_pr—1
of s can be represented by the symmelril-power sum of the roots =2 — st s_pr—1= ful(z).
as follows:
4 . ;
3 3 . (4 v, 1 <6 < .
o = of ok +ab, k=0.1, .- @3) Thus fi(z) also hasa; , 1 < ¢ < 3, as its roots. From Lemma

1, fi(x) is irreducible overr'. Thereforea® and crf, are conjugate
Let us denote the period of(z) asper (f). Notice that if f(z) is of each other. In other words, there exists an integér < ¢ < 2,
irreducible overF, then the period 08(f) is equal toper (f). such that
.I = 1 t
Lemma 1: Let f(x) = a® — aa® + bz — 1 be a polynomial over K =kp (mod Q).
F, a1, a2, a3 be three roots off () in the splitting field of f(x)  This contradicts the fact thdt and &' are different coset leaders

over F, ands be the characteristic sequence generated(by. Let moduloQ. Q.E.D.
fulz) = (I _ af) (I _ a’;) (I _ a’;) (4) Remark: Lemma 2 and Theorem 1 will play key roles in construct-
ing a public-key distribution scheme, since the former guarantees the

) fe(w) = 2®—si(a, D) +s_i(a, b)o—1, wheres_,(a, b) = COmmutative property and the later provides a one-to-one correspon-
sk(b, a). dence between the private key space and the public key space. Fact

i) f(x) and fi(x) have the same period if and only if1, together with Lemma 2, will be used to construct an RSA-type
(per(f), k) = 1. encryption scheme.

i) If (per(f), k) = 1, then f(x) is irreducible overF if and
only if fi(x) is irreducible overF'. lll. FAST COMPUTATIONAL METHOD

Proof: i) It follows from Newton’s formula of (3). ii) Note that  In [7], there is an algorithm to calculate tti¢h term of any linear
the minimal polynomials ofi¥ anda; have the same period if and recurring sequences. Here we will provide a much more efficient
only if (per(f), k) = 1. Henceper (f(x)) = per(fi(x)) if and algorithm to calculate théth term of a third-order characteristic
only if (per(f), k) = 1. iii) It follows from ii). sequence.
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Lemma 3: Let {s;} be the third-order reciprocal characteristic IV. A PusLIC-KEY DISTRIBUTION SCHEME
sequence oveF' with the characteristic polynomiaf(z), defined In this section, we will present a public-key distribution (GH-
by (1), and{s—}, its reciprocal sequence. Then for any positivkpy scheme that is constructed by a pair of third-order characteristic
integersn and m sequences and discuss its security.

) son = 52 — 2s_,, and

||) Snédm — Sn—mS—m = Sn4+m T Sn—2m, n # m. A. GH-PKD Scheme

Proof: From (2), we have Key-Generation Phase:

Son = 2" + " 4 a3” and s = (a7 + b + a,g')z_ « System public parameters: is a prime number, and(z) =
2® —az? 4+ bx — 1 is an irreducible polynomial over Glp)
Notice thatajasas = 1. Then with the periodQ = p* + p + 1.
2 _ on on on non « User Alice selects that satisfie® < ¢ < @ andged (e, Q) =1
Sn =0T H Azt Hazt 42 1<;<3 e as her private key. She then computes, s—_.) as her public
ANV

, key from the system public kgyandf(z) = «* —aa® +bx—1.
— gy 42 ’Zafn * User Bob selects: that satisfies thal < r < @ and
. i ged (r, Q) = 1 as his private key. He then computgs, s_,.)
as his public key from the system public keyand f(z) =
=Son +25_p 3 2
z° —ax® + bx — 1.
which gives i). The same argument can be applied to ii). Q.E.D. Key-Distribution Phase:(See the bottom of this page.)

' ; ] A i L 2
Let k = >°7_, k2" " be the binary representation &f T, = ceording to Lemma

ko #0,andT; = k;j+27T;-1,1 < j <r.So,T, = k. From Lemma Se(Sry S—r) =Ser = 87 (Ses S—e),
3, the recurrence can be described by the following formulas.  gpq
For k; = 0
ST;—1 = ST,_ ST, —1 —bs—71,_ +5_(r,_;+1) ) S_c(Sry S—r) =8_cr = S_r(Sc, S_¢).
2 <
ST, =87, | —25-T;_, ®) Namely, their common key i$sc,, s_cr).
and
Example: Letp = 11, andf(x) = 2® + 42 — 1 be an irreducible
STy = STy STy oyt = A5=T;_y + S—(1;_1-1)- ©) polynomial over GF11) of period133 = 7 x 19.
L Alice: Selectse = 9 as her private key. Her public key is
Fork; =1
(5'9, 5‘_9) = (].07 6)
$1,1 :3%]_71 —2s 1, (10) Bob: Selects+ = 13 as private key. His public key is
S'I'j :31’j7131'j,1+1 _ “‘37'1']-,1 + sf(Tj,lfl) (ll) (813, 8—13) = ({, 1)
ST 41 = S%j,lﬂ = 25_(7;_,41)- (12) Kgy-Distribution Phase:
Alice:
Since{s;} and{s_x} are symmetric in (7)—-(12) and the proba- ) (T 1) =8
bility that %, equals0 or 1 is 1/2, therefore, we obtain the following se(sr, 5-r) = 59(T, 1) =
result. and
Theorem 2: With the samef (z), {sx}, and{s_.} as in Lemma S—elsry 5r) = 50(T. 1) = 5124(7, 1) = 5.
3. Using (7)—~(12) to calculate a pair of theh termss; ands_x  So she obtains the keg8. 5).
needs9 log & modulop multiplications on average. Bob:
Note This method is much more efficient than the algorithm $r(Se, S—e) = 513(10, 6) =8

using modulo polynomial [7]. The algorithm provided in [7] requiresdnd

O(u(n) log k) arithmetic operations to calculate théh term of an

LFSR sequence of orderover F' wherep(n) is the total number of s-13(10, 6) = 5120(10, 6) = 5.

arithmetic operations required to multiply two polynomials of degrefe optains the same ke, 5) as Alice.

n — 1. In case ofn = 3, p (3) is the total number of multiplications

modulo p required to multiply two polynomials of degrek over Remark:

F(= GF(p)) and reduce it by modulg(x). Notice that multiplying i) In the Key-Distribution Phase, this scheme does not involve the

two polynomials of degre@ over F' without reduction by modulo system public keyf(z) = 2* — ax? + bz — 1.

f(x) already requires nine multiplications moduloSo, by using the  ii) The spaces of the private keys and public keys are the sets
algorithm in [7] to calculate théth terms;. requires at leafilog & consisting of all coset leaders modypd + p + 1 relatively
multiplications modulg. Consequently, the total computational cost prime top® +p+1 and all irreducible polynomials over Gp)

for calculating a pair of thekth term s, and s—; needs at least of degree3 with the periodp® 4+ p+ 1, respectively. According
181og k& multiplications modulop. to Theorem 1, the map :— (si, s—) from the space of the

(ser5—c)

Alice _— Bob
computing: computing:
5c(sp, 5—p) ands—_.(s,, s—,) (or2mr) 5r(Se, 5—c) @Nds_,(s., s_.)
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private keys to the space of the public keys is bijective. Thus TABLE |
there will be different public keys corresponding to different A CONSTRUCTION FOR THEDECIPHERING KEYS
pr!vate keys in .GH-PKD..‘M?reover, the size of ‘the.space of Condition Multiplier of the Deciphering Key
private (or public) keys ig(p® + p 4+ 1)/3 whereo(-) is the )
Euler function. Period
i) In each key exchange session, the computational cost for eachr(1, p)a I'(1, ¢) & =Ry Rig die=1 (mod &)
user is91 modulop multiplications on average.
ey 7 e ’ CLPATC ) | &= Rip Rag doe =1 (mod &)
B. Security of GH-PKD T, pATG, q) & =Ry, Ry die =1 (mod &)
The security for GH key distribution scheme is based on the I'(Z. p)AT(1, ¢) O =Ryp Riyg die =1 (mod &)
dl_fflculty of solvmg_the’ dlsprete logarithm in Glp _). If an attacker TQ. AT 9) &= Rop Ray dse = 1 (mod &)
tries to compute Alice’s private keyfrom her public key(s., s_.),
a polynomialf.(x) = «® — s> + s_.« — 1 can be formed. Since | [ PATG, 9) &=Rap Rag dse =1 (mod &)
f(z) :_:133—(1,.77?4—61—.1 is irreducible over’, according to Lemma 1, [ (3, p)a I(1, q) 8 =Rsy Rig dre =1 (mod &)
fe(z) is also irreducible oveF'. Assume thatr and 3 are the roots —
of f(x) andf.(x) in the extension GEp*) of F, respectively. They | ['3-PAT(2.9) &= Rsp Rog dse = 1 (mod &)
then can be derived by solving roots pfz) = * — az® + bz — 1 TG, pAT(G, ) &=Rsp Rag doe = 1 (mod &)

and f.(z) = 2> — s’ +s_.x—1in GF(pS). Then3 = a“. As a
result, oncex andj are known, solving the exponeats equivalent
to solving the discrete logarithm in GB*). According to [1], [2],

[6], [9], and [11], solving the discrete logarithm in GF) is much VM€
harder than solving discrete logarithm in the GF for the samep. Cla,b)=3""a>+b
V. AN RSA-TYPE ENCRYPTION SCHEME and
In this section, we will propose an RSA-type public-key cryptosys- D(a,b)=—-2-3%"+37"ab - 1. (14)
tem by using a pair of third-order characteristic sequences Bver
which is an integer ring module. The discriminate of the cubic (14) is defined as

_ _ Aa, b) = —4C*(a, b) — 27D*(a, b). (15)
A. An RSA-Type Encryption Algorithm
1) Public keys e andn, wheren = pq, p andq are primes, and Let = € {p, ¢},
ged(e, p' — 1) = 1,0 = 2, 3. .
2) Private keysd,, 1 < i < 9, whered;’s are given by Table I. ~(a, b) = <—27D(a= b) + /—27A(a, b)) (16)
3) Enciphering: For a messager = (m, m2) where0 < my, T —27D(a, b) — /—27A(a, b)
m> < n, the sender computes = s.(m1, m2) andcz =
s_e(m1, mz). The ciphertextc = (c1, c2). where N € {(z — 1)/6, (z + 1)/6}, and
4) Deciphering. First, the receiver computes three functions
(14)—(16) of the cipherg:, ¢ in order to choose a proper <i>, the Legendre symbol of an integer
decryption keyd, in the set{d;, 1 < i < 9} in Table I. Then r
he computesn; = sa(ci1, c2) andms = s_q(c1, c2) using
the selected keyl.
Note that all computations here are performedZin

with respect to the prime. (17)

Now we are in a position to give a definition for a logic function
['(j, ), which is related to the ciphertextci, c2), where; €
Remark: According to Fact 1 and the Chinese Remainder Thedd, 2, 3} andz € {p, ¢}.

rem, the map T'(1, z) is truee A(er, co)(modx) = 0 or A(er, ¢2)(modx) #

0, (A(ct, c2)/z) =1 and~(ci, c2)(modz) = 1.

(m1, ma) = (sc(m1, ma), s—c(mi, msa))

is a bijective map from the message space to the ciphertext space. & Casel

Next we will show how to construct decryption keys. For a thirdr(2, ) is trues A(er, e2)(mod ) # 0 and(A(er, e)/x) = —1.
order characteristic sequenageover FF = GF(p) generated by h C
f(z) = 2® —a2® + bx — 1, its period, per (8), may be one of & Case 2

three cases as listed below:
(3, x) is true < A(er, e2)(modx) # 0, (Aer, e2)/x) =1 and

Case 1: f(z) is reducible overF' < per (s)|p — 1. Y1, ¢2) (moda) £ 1.
Case 2: f(x) = (z — a) fi (x) wheref, () is irreducible overF

anda € F < per (8)|p®> — 1 andper (s) is not a factor < Case 3

of p — 1. . 5

_ ,P o ) N We denoteR;, , =x— 1, Ry, = 2> — 1, andR3 » = 2> + o + 1.
Case 3: f(«) is irreducible overF” < per(8)[p” +p + 1. From Lemma 1, two polynomials® — miz? + msz — 1 and
According to the method for solving a cubic equation in a finite” — ¢12” + cox — 1 have the same period. So the receiver can
field in [17], substitutingr = y 4+ 3 '« into f(z), then select a proper deciphering key based on the polynomial constructed
. by the ciphertext(ci, ¢2). Table | gives the construction of these
f(x)=g(y) =y + C(a, b)y + D(a, b) (13) deciphering keys.
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B. Security [6]

It is clear that the security of the scheme is based on the dn‘flcult¥7]
of factoring a large composite integer.

(8]

C. Computational Cost (0]

As in the RSA public-key system, we can choose a smallich

that the computational cost for computing #té terms of the third- [10]
order characteristic sequence witliz) = @° — mi2® + max — 1 i1
and its reciprocal polynomial is low. For example, by taking 3,
we compute
so=3,s51 =m1 and ss = mi —2ms (12]
§3 =M1S2 — Ma2s1 + So
\ [13]
54 =8, —25_5 and s5 = mi154 — M2853 + S2.
So ¢i = s5. Similarly, [14]
s0 =3,5_1 =mao and s_s = ma — 2my
S_3 =M2s_2 —IM15_1+ So [15]
S_4 = 52,2 — 259 and s_5 = mos5_4 —M15_3 + 5_o. [16]

We getc, = s_5. Totally, we only need 0 modulon multiplications

for enciphering & log n-bit message. For deciphering process, firgt7]
we need to decide a proper deciphering k&yi.e., we need to
compute three functionsA(ci, ¢2)(mod z) requires8 modulo »
multiplications. For(A(e1, c2)/x) and v(c1, c2)(mod x), each of
the last two functions requirds5 log p modulop multiplications and [19]
1.51og ¢ modulog multiplications, respectively. Second, we need 0]
compute thelth terms of the third-order characteristic sequence with
2* — e12? + eox — 1 and its reciprocal polynomial, which needsl?
9log n modulo » multiplications on average. Therefore, the total
computational cost in the deciphering proces$2dog n modulon  [22]
multiplications on average.

(18]

(23]
VI.

As we have shown, we can conclude that the proposed public-key
distribution scheme (GH-PKD) and the RSA-type encryption scheme
are practical efficient public-key cryptosystems. Especially, GH-PKD
is successful in reducing the size of the modulus while speeding up
the computation. Note that from current literatures [19], [22], [23],
only a few of public-key cryptosystems have been put into practical
use.

The method presented here can lead to the construction of public-
key cryptosystems by usingth-order characteristic sequences over
GF(p) of any degreen > 3.

CONCLUSION AND DiscussION
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