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Abstract: A structured multisignature scheme is an order-sensitive multisignature scheme that
allows participating signers to sign messages in compliance with a specified signing order. It has
been shown that the Burmester et al. order-sensitive multisignature scheme cannot prevent all
signers producing a valid multisignature without following the specified signing order. The paper
proposes two structured multisignature algorithms, one based on the RSA scheme and the other on
an ElGamal-type scheme. Incorporation of both order-free and order-sensitive multisignature
algorithms together is shown to construct a generalised multisignature algorithm.

1 Introduction

The multisignature is a kind of group-oriented cryptography
that was first introduced by Desmedt [1] in 1987. The group
has a security policy that requires a multisignature to be
signed by all group members with the knowledge of
multiple private keys. However, to any verifier, the multi-
signature can be verified using a corresponding group public
key. In general, we assume that all group members do not
trust each other. On the other hand, if they do trust each
other, all private keys can be shared among themselves.
Thus the multisignature is identical to a normal digital
signature. An efficient digital multisignature scheme can
combine all individual signatures of the same message into a
single multisignature and this multisignature can be verified
efficiently.

Harn [2] has proposed an ElGamal-type multisignature
scheme that can combine all individual signatures into a
multisignature without any data expansion. In other words,
the length of the multisignature is equivalent to the length
of each individual signature. This result is reasonable since
the length of the signature=multisignature depends only on
the security assumptions of signature schemes and not on the
number of signers involved. Multiple signers with know-
ledge of multiple private keys can produce a fixed length of
multisignature. Harn’s multisignature scheme is order-free
since signers can sign the message in any order.

Burmester et al. [3] proposed a structured ElGamal-type
multisignature scheme in the PKC 2000 conference.
A structured multisignature scheme is an order-sensitive
multisignature scheme that only allows participating signers
to sign messages in compliance with a specified signing
order. However, in a recent paper [4] it has been shown that,

the Burmester et al. order-sensitive multisignature scheme
cannot prevent all participating signers producing a valid
multisignature without following the specified signing
order. We do not consider that this is a serious setback
since it requires all signers to co-oporporate. This condition
contradicts the general assumption of group-oriented
cryptography.

We propose two structured multisignature algorithms.
One algorithm is based on the RSA scheme [5] and the
other on an ElGamal-type signature scheme [6]. Our
solution has better performance than the solution proposed
by Burmester et al. In the Burmester et al. solution, all
signers need to follow the signing order twice to obtain a
group signature; however, in our solution, one-round
processing is required. In addition, there are fewer
computations needed by each signer. We also show the
incorporation of both order-free and order-sensitive multi-
signature algorithms together to construct a generalised
multisignature algorithm.

2 Structured multisignature algorithm based on
RSA scheme

We assume throughout this paper that there are t signers
U1;U2; . . . ;Ut in a group. The specified signing order is
hU1;U2; . . . ;Uti: Each signer needs to follow the RSA
scheme to select two large secret primes pi and qi and
publish their product ni: At the same time, each signer needs
to determine the public key ei and private key di

accordingly. However, to construct an order-sensitive
multisignature scheme their publicly-known products n1;
n2; . . . ; nt need to satisfy the following requirement, that
n1 < n2 < . . . < nt: To sign a message m, U1 computes
S1 ¼ hðmÞd1 mod n1 and sends it to U2; where h() is a one-
way hash function; U2 computes S2 ¼ S

d2

1 mod n2 and
sends it to U3; and so on. The multisignature is the output of
the last signer St: To verify this multisignature the verifier
needs to reverse the signing order to check whether h(m) is
identical to ðð. . . ððS et

t mod ntÞet�1 mod nt�1Þ . . .Þe1mod n1Þ:
This algorithm is order-sensitive because the commu-

tative law does not apply to modular multiplication that
involves two different moduli ni and nj with gcdðni; njÞ ¼ 1:
That is, ðamod niÞmod nj? ðamod njÞmod ni; where a > ni;
and a > nj: Thus if a multisignature is signed by signers
without following the specified order, the multisignature
cannot be verified successfully.
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3 Structured multisignature algorithm based on
ElGamal-type scheme

3.1 Public parameters

A large prime p, where p ¼ 2q þ 1 and q is also a prime, and
a primitive element a of GF( p) are known to all signers.

3.2 Generating individual and group private=
public key pairs

Initially all signers need to work together to generate their
public keys yi for i ¼ 1; 2; . . . ; t; and their group public
key y. Each user randomly selects an odd private key xi from
½1; q � 1	: The last signer Ut computes yt ¼ a xt mod p and
sends it to Ut�1; Ut�1 computes yt�1 ¼ y

xt�1
t mod p and

sends it to Ut�2; and so on. In other words yi ¼ yxi
iþ1 mod p

for i ¼ 1; 2; . . . ; t where ytþ1 ¼ a: yi is the public key of the
signer Ui: The group public key y is the public key of the
first signer U1 such that y ¼ y1; where y1 ¼ axtxt�1...x1 mod p:
The group private key is xtxt�1 . . . x2x1 mod p � 1; which
involves all signers’ private keys. Figure 1 shows the
signing sequence and key generation order and related
information of each signer. It is important to know that each
signer Ui needs to prove to all others knowledge of the
private key xi before all other signers accepting the revealed
value yi as Ui’ s public key. In case a digital certificate is
associated with each public key, each signer needs to prove
the knowledge of secret key to the certificate authority (CA)
before obtaining a digital certificate from the CA. This
procedure can prevent some possible attack as pointed out
by Langford [7].

3.3 Generating individual signatures

To sign an ElGamal-type signature there is a pair of short-
term private and public keys computed by each signer. This
computation is independent of the message and can be
precomputed. Similar to the order-free multisignature
algorithm proposed in [2], each signer Ui randomly selects
a short-term private key ki from ½1; q � 1	 and computes
ri ¼ y

ki

iþ1 mod p; where ytþ1 ¼ a: After receiving all ri for
i ¼ 1; 2; . . . ; t; each signer can compute R ¼ r1 r2 . . . rt

mod p: We mention again that since this process is
independent of the message, it does not need to follow the
specified signing order and it can be precomputed.

For a given message m where m is the one-way hash
of the message, following the specified signing order
hU1; U2; . . . ; Uti each signer computes an individual sig-
nature si that satisfies the equation xisi�1 ¼ kiR þ si mod
p � 1; where s0 ¼ m; si is sent to the next signer.

3.4 Verifying individual signature

On receiving the individual signature si from the preceding
signer Ui the current signer Uiþ1 needs to verify that all
preceding signers hU1; U2; . . . ; Uii have signed the mess-
age m properly. Since all preceding signers’ individual
signatures satisfy the following equations:

ym
1 ¼ rR

1 y
s1

2 mod p

y
s1

2 ¼ rR
2 y

s2

3 mod p

. . .

. . .

. . .

y
si�1

i ¼ rR
i yiþ1

si mod p

by multiplying all these equations together we obtain the
following verification equation as:

ym
1 ¼ ðr1r2 . . . riÞRyiþ1

si mod p ð1Þ
We claim that the signer Uiþ1 can use this verification
equation to verify that all preceding signers hU1; U2; . . . ;
Uii have signed the message m properly.

3.5 Generating group signature

We claim that ðR; stÞ is the multisignature of the message m.

3.6 Verifying multisignature

Similarly, by multiplying all t equations together we obtain

ym ¼ ym
1 ¼ RRast mod p ð2Þ

We claim that any verifier can access the group public key
y to verify the multisignature ðR; stÞ of message m,
according to (2).

Fig. 1 Signing order of a structured multisignature scheme and related information of each signer
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3.7 Security analysis

The security of this proposed scheme is based on the
computational assumption of discrete logarithm (DL)
problem. Here we list some security features of this
algorithm.

. The group public key y, where y1 ¼ axtxt�1...x1 mod p;
corresponds to a private key xtxt�1 . . . x2x1 mod p � 1;
which involves all signers’ private keys. Finding the private
key from the public key is equivalent to solving the DL
problem.
. Although the group public key y is identical to the first
signer’s public key y1 the first signer can only generate a
signature pair (R, s) that satisfies

ym
1 ¼ RRys

2 mod p

and this verification equation is different from (2).
. All signers must follow the specified order exactly to
obtain a valid multisignature. The absence of a single
individual signature results in an invalid multisignature.
. Since y1 ¼ y

xixi�1... x2x1

iþ1 mod p; which involves private keys
xi; xi�1; . . . ; x2 and x1; we rewrite (1) as

y
ðxixi�1... x2x1Þm

iþ1 ¼ ðr1r2 . . . riÞR yiþ1
si mod p

Forging an individual signature si to satisfy (1) is equivalent
to solving the DL problem. The individual signature
verification (1) enables the signer Uiþ1 to verify that all
preceding signers hU1; U2; . . . ; Uii have sign the message
m properly.
. Since our algorithm enables one to verify any individual
signature in the middle of the signing sequence, the signing
process can be halted once any invalid individual signature
has been found.
. To achieve maximal security each signer’s public key yi

should be a primitive element of GF(p). According to the

following lemma, we show that this condition is guaranteed
since each private key is an odd integer from f1; q � 1	:

3.8 Lemma 1

Let a be a primitive element of GF(p). The set G

G ¼ fa2iþ1=q > i > 0; 2i þ 1< qg
consists of all primitive elements of GF(p) and all quadratic
nonresidue modulo p except for �1 ¼ aq:

3.9 Discussion

In a previous Section we have shown that for a specific
signing order hU1; U2; . . . ; Uti that involves t signers, the
public key is y ¼ axtxt�1...x1 mod p; where xi is the private
key of signer Ui: The multisignature is verified based on the
group public key y and public parameters a and p. Actually,
for any subset of signing sequence from the original signing
sequence hU1;U2; . . . ; Uti; the structured multisignature
can be generated in a similar way. For example, assume that
an order-sensitive signing sequence hUi�1; Ui; Uiþ1i that
involved three signers, each multisignature can be verified
based on the group public key yi�1 and public parameters

yiþ2 and p, where yi�1 ¼ y
xi�1xixiþ1

iþ2 mod p:

4 Generalised multisignature scheme

A generalised multisignature algorithm should work for
applications that contain both order-free and order-sensitive
cases. For example, as shown in Fig. 2, in an order-sensitive
sequence hU1; U2; . . . ; Uti the signer Ui actually consists
of n individual signers Ui;1; Ui;2; . . . ; Ui;n: At Ui level, these
n signers Ui;1;Ui;2; . . . ; Ui;n generate order-free multi-
signature and, at system level, t signers U1; U2; . . . ; Ut

generate order-sensitive multisignature. Here we
incorporate the order-free multisignature in [2] and the

Fig. 2 Signing order and related information of each signer for generalised multisignature
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order-sensitive multisignature algorithm proposed in the
previous Section to construct an efficient solution.

Following the same procedure as described, signers
follow the specific order hUt; Ut�1; . . . ; Uiþ1i to generate
their private keys and public keys as shown in Fig. 2. At
signer Ui; according to [2], each signer Ui;j randomly selects
an odd private key xi;j from ½1; q � 1	 and computes the
public key as yi;j ¼ y

xi;j

iþ1 mod p: The private key xi of signer
Ui is determined by all signers, Ui;j for j ¼ 1; 2; . . . ; n as
xi ¼ xi;1 þ xi;2 þ � � � þ xi;n mod p � 1 and the public key is

yi ¼ y
xi;1þxi;2þ���þxi;n

iþ1 mod p: Then, the remaining signers
follow the specific order hUi�1;Ui�2; . . . ;U1i to generate
their private and public keys.

To sign an ElGamal-type signature each signer Ui;j at the
signer Ui in the order-free sequence randomly selects a
short-term private key ki;j from ½1; q � 1	 and computes
ri;j ¼ y

ki;j

iþ1 mod p: After receiving all ri;j for j ¼ 1; 2; . . . ; n
each signer can compute ri ¼ ri;1ri;2...ri;n mod p: Similarly,
each signer Ul; at the system level, in the order-sensitive
sequence randomly selects a short-term private key kl from
½1; q � 1	 and computes rl ¼ y

kl

lþ1 mod p; where ytþ1 ¼ a:
After receiving all ri for i ¼ 1; 2; . . . ; t each signer, at the
system level, can compute R ¼ r1r2 . . . rt mod p:

For a given message m, where m is the one-way hash
of the message, signers in the order-sensitive sequence
hU1;U2; . . . ; Ui�1i compute an individual signature si as
described previously. Then each signer in the order-free
sequence at Ui computes an individual signature si;j that
satisfies the equation xi; jsi�1 ¼ ki; j;R þ si;j mod p � 1:
These individual signatures satisfy the following equations:

y
si�1

i;1 ¼ rR
i;1y

Si;1

iþ1 mod p

y
si�1

i;2 ¼ rR
i;2y

Si;2

iþ1 mod p

. . .

. . .

. . .

y
si�1

i;n ¼ rR
i;ny

Si;n

iþ1 mod p

Multiplying these equations together obtains

y
si�1

i ¼ rR
i y

Si

iþ1 mod p

where si ¼ si;1 þ si;2 þ � � � þ si;n mod q: Then the rest of the
signers in the order-sensitive sequence follow the specific
order hUiþ1; Uiþ2; . . . ; Uti to generate their individual
signatures.

5 Conclusions

We have proposed two order-sensitive multisignature
schemes, one based on the RSA scheme and the other
based on an ElGamal-type scheme. Both schemes are very
efficient in terms of the length of multisignature and
verification time. In addition, both algorithms work without
the assistance of a mutually trusted third party. We also
show the incorporation of both order-free and order-
sensitive multisignature algorithms together to construct a
generalised multisignature algorithm.
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