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Abstract—The concept of ring signature was first introduced by Rivest et al. in 2001. In a ring signature, instead of revealing the actual

identity of the message signer, it specifies a set of possible signers. The verifier can be convinced that the signature was indeed

generated by one of the ring members; however, the verifier is unable to tell which member actually produced the signature. In this paper,

we first propose a generalized ring signature scheme based on the original ElGamal signature scheme. The proposed ring signature can

achieve unconditional signer ambiguity and is secure against adaptive chosen-message attack in the random oracle model. Then, based

on the generalized ring signature scheme, a generalized multisigner ring signature scheme is introduced to increase the level of

confidence or enforce cross-organizational joint message signing. Comparing to ring signatures based on RSA algorithm, the proposed

generalized ring signature scheme has three advantages: 1) all ring members can share the same prime number p and all operations can

be performed in the same domain; 2) by combining with multisignatures, we can develop the generalized multisigner ring signature

schemes to enforce cross-organizational involvement in message leaking. It may result in a higher level of confidence or broader

coverage on the message source; 3) the proposed ring signature is convertible. It enables the actual message signer to prove to a verifier

that only she is capable of generating the ring signature.

Index Terms—Generalized ring signature, anonymity, unconditional secure, unforgeability, random oracle secure.

Ç

1 INTRODUCTION

THE concept of ring signature was first introduced by
Rivest et al. in 2001 [1] to provide anonymity for the

message signer. In a ring signature scheme, the message
signer, say Alice, selects a set of ring members including
herself as the possible message signers. The actual message
signer can generate a ring signature on her own using only
her private key and the others’ public keys, without the other
ring members’ assistance or even awareness. However, the
generated ring signature can convince any verifier that the
message was indeed signed by one of the ring members while
the real signer’s identity is totally anonymous to the verifier.

The idea behind ring signature schemes is similar to that of
group signatures [2], [3], [4] but with some variations. First of
all, unlike a group signature, a ring signature scheme does
not require a group manager to administrate the set of ring
members. The actual message signer has the freedom to
select all the ring members and sign whatever messages she
like. Second, in a group signature scheme, the group manager
can recover the real identity of the actual message signer. In
fact, a group signature only looks indistinguishable to the
verifier but not to the group manager. The group manager
can even revoke the anonymity of misbehaving signers.

Since the introduction of ring signature, several ring
signature schemes have been proposed. In [5], a ring
signature based on Schnorr signature scheme [6] is proposed.
Recently, ring signature schemes based on bilinear pairing
[7], [8], [9], [10] and identity-based ring signature schemes [9],

[11] are introduced. Some variations of ring signature
schemes are also presented in literature [10], [12], [13], [14],
[15]. Similar to group signatures, convertibility has also been
defined for ring signature in the literature [16]. By definition,
convertibility enables the actual message signer to provide
nonrepudiation evidence to a verifier for the originality of the
signature at times of her choice. However, we point out in this
paper that the convertibility algorithm proposed in [16]
cannot produce nonrepudiation evidence of the actual
message signer.

In this paper, a ring signature scheme based on the
original ElGamal signature scheme is first proposed. We call
it a generalized ring signature. The generalized ring signature
scheme is secure against adaptive chosen-message attack
[17]. This means that the proposed generalized ring signature
scheme is secure even if the adversary is allowed not only to
get ring signatures for whatever messages she like but also to
request ring signatures of messages that depend additionally
on previously obtained signatures. Comparing to ring
signature schemes based on RSA, where each ring member
uses a different modulus that has to be expanded to a
common domain, in the generalized ring signature scheme,
all ring members can share the same prime number and all
operations can be performed in the same domain. Moreover,
the generalized ring signature scheme is convertible. The
actual message signer can always prove to a verifier for the
originality of the ring message at times of her choice. Next,
we define a generalized ring signature scheme with multiple
signers. We call it the generalized multisigner ring signature.
Though the concept of the generalized multisigner ring
signature scheme is similar to that of a threshold ring
signature scheme [18], [19], [20], [21], the generalized
multisigner ring signature maintains the ring structure
defined in [1]. The difference also includes that in a threshold
ring signature, all the n possible signers are equally possible
in generating the ring signature, while only t are the actual
signers. While for the proposed generalized multisigner ring
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signature, each ring member can contain a group of users.
The diversity of the ring members can enforce cross-
organizational message signing, while the actual number of
signers can be hidden from the verifiers.

Our contributions in this paper are primarily twofold.
First, a generalized ring signature scheme based on the
original ElGamal signature scheme is proposed. Second, a
generalized multisigner ring signature scheme that com-
bines multisignature and the generalized ring signature is
proposed to increase the level of confidence or enforce
cross-organizational joint message signing. Both the pro-
posed generalized ring signature scheme and the general-
ized multisigner ring signature scheme can achieve
unconditional signer ambiguity and are secure against
adaptive chosen-message attacks. Moreover, the proposed
schemes have two advantages over the ring signature
schemes based on RSA: 1) the extension operation can be
avoided since all ring members can share the same prime
modulus p and all operations can be performed in the same
domain and 2) the generalized ring signature scheme is
convertible. The actual message signer can prove to a
verifier that only she is capable of generating the ring
signature without requiring any extra effort.

This paper is organized as follows: In Section 2, we give
our notation and the preliminaries. In Section 3, we propose
a generalized ring signature based on the ElGamal
signature scheme. We also prove that the proposed
generalized ring signature scheme is secure against adap-
tive chosen-message attack. In Section 4, we further define a
generalized multisigner ring signature scheme. Convert-
ibility discussion of RSA-based ring signature scheme and
the proposed ring signature schemes are presented in
Section 5 along with security analysis of the proposed
schemes. We conclude in Section 6.

2 PRELIMINARIES

2.1 Notation

In [1], the concept of ring signature was first proposed.
Suppose that Alice wishes to generate a ring signature of a
message m for a ring of n individuals A1; A2; . . . ; An, where
the signer Alice isAs; 1 � s � n. DenoteS ¼ fA1; A2; . . . ; Ang.
EachAi 2 S is called a ring member. The public key ofAi is Pi
and the corresponding private key isSi. In this paper, we will
not distinguish between the ring member and its public key.
Therefore, S will also be used to denote the set of public keys
of all ring members.

A ring signature scheme consists of the following two
algorithms:

. ring-sign ðm;SÞ. Given a message m and the set
of ring members S ¼ fP1; P2; . . . ; Png, the actual
signer As can produce a ring signature �� using S
and her own private key Ss.

. ring-verify ðm;��Þ. Given a message m and a ring
signature ��, which includes S ¼ fP1; P2; . . . ; Png, a
verifier can determine whether ðm;��Þ is a valid ring
signature generated by one of the ring members.

There are two security requirements for ring signature
schemes, which include

1. Signer ambiguity. The probability that a verifier can
successfully determine the real signer of a ring

signature is exactly 1=n, where n is the total number
of ring members.

2. Unforgeability. The advantage that a non-ring-
member can successfully forge a ring signature is
negligible.

Combining functions. A combining function Ck;vðy1;
y2; . . . ; ynÞ takes as input a key k, an initialization value v,
and a list of arbitrary values y1 ¼ g1ðx1Þ; . . . ; yn ¼ gnðxnÞ 2
f0; 1gb, where g1; . . . ; gn are trapdoor functions. It outputs a
value z 2 f0; 1gb, such that for any given k, v, s, 1 � s � n,
and any fixed values of all the other inputs yi, i 6¼ s, the
functionCk;v is a one-to-one mapping from ys to the output z.
Moreover, this mapping is efficiently solvable. However, it
should be infeasible to solve the verification equation for
x1; . . . ; xn without knowing any of the private keys and
inverting any of the trapdoor functions g1; . . . ; gn.

In [1], a combining function is proposed as follows:

z ¼Ck;v g1ðx1Þ; . . . ; gnðxnÞð Þ
¼Ek gnðxnÞ � Ek � � � � Ekðg1ðx1Þ � vÞð Þð Þ:

ð1Þ

Equivalently, we have

ys ¼Ek gs�1ðxs�1Þ � � � � � Ek g1ðx1Þ�ð Þð Þ
�E�1

k gsþ1ðxsþ1Þ � � � � � E�1
k gnðxnÞ�E�1

k ðzÞ
� �� �

:
ð2Þ

2.2 Ring Signatures

The ring signature proposed by Rivest et al. [1] is based on
the RSA signature scheme [22]. We call it RSA-based ring
signature. The main idea of the RSA-based ring signature is
illustrated in Fig. 1 with the combining function defined in
(1) and (2) above.

In the RSA-based ring signature scheme, each ring
member Ai has an RSA public key Pi ¼ ðni; eiÞ, which
specifies the trapdoor one-way permutation fi over ZZni :

fiðxiÞ ¼ xeii mod ni:

It is assumed that only Ai knows how to compute the
inverse permutation f�1

i efficiently.
One of the problem that RSA algorithm faces is that each

ring member has different modulus, which makes it
awkward to combine the individual signatures. To solve
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this problem, all the trapdoor permutations are extended to
a common domain f0; 1gb, where 2b is some power of two,
which is larger than all the moduli ni’s. The extended
trapdoor permutation gi over f0; 1gb is defined in the
following way. For any b-bit input mi, let mi ¼ qini þ ri,
where qi and ri are nonnegative integers, 0 � ri � ni. Then

giðmiÞ ¼ qini þ fiðriÞ; if ðqi þ 1Þni � 2b;
mi; else:

�

It is assumed that there is the existence of a publicly
defined ideal symmetric encryption algorithm E such that
for any k of length l, the function Ek is a permutation over
b-bit strings. It is also assumed that there is the existence of
a publicly defined collision-resistance hash function h that
maps arbitrary inputs to strings of length l, which are used
as keys for E.

In this section, we will describe the RSA-based ring
signature scheme proposed in [1], which contains the two
algorithms below:

ring-sign ðm;SÞ: Suppose that Alice wishes to sign a
message m with a ring signature for the ring of n

individuals A1; A2; . . . ; An, where Alice is As for some s,
1 � s � n. Given the message m to be signed, As’s private
key Ss ¼ ðds; nsÞ, and the sequence of public keys
P1; P2; . . . ; Pn of all the ring members, As computes a ring
signature as follows:

1. Choose a key. The signer As first computes the
symmetric key k as follows:

k ¼ hðmÞ:

2. Pick a random glue value. The signer picks an
initialization value v 2 f0; 1gb uniformly at random.

3. Pick random xi’s. As picks random xi for all the
other ring members 1 � i � n, i 6¼ s uniformly and
independently from f0; 1gb, and computes

yi ¼ giðxiÞ:

4. Solve for ys. As solves the following ring equation
for ys:

Ck;vðy1; y2; . . . ; ynÞ ¼ v:

Equivalently, we can solve ys as follows:

ys ¼Ek ys�1 � Ek � � � � Ekðy1 � vÞð Þð Þ
� E�1

k ysþ1 � Ek � � � �E�1
k yn �E�1

k ðvÞ
� �� �� �

:

5. Invert ys using As’s trapdoor permutation. As uses
her knowledge of the trapdoor to invert gs on ys to
obtain xs:

xs ¼ g�1
s ðysÞ:

6. Output the ring signature. The signature on the
message m is defined to be

�� ¼ ðS; v;x1; x2; . . . ; xnÞ: ð3Þ

ring-verify ðm;��;SÞ. A verifier can check an alleged

signature on message m as follows:

1. Apply the trapdoor permutations. For i¼1; 2; . . . ; n,
the verifier computes

yi ¼ giðxiÞ:

2. Obtain k. The verifier hashes the message m:

k ¼ hðmÞ:

3. Verify the ring equation. The verifier checks that
the yi’s satisfy

Ck;vðy1; y2; . . . ; ynÞ ¼ v:

If the ring equation is satisfied, the verifier

Accepts the ring signature as valid. Otherwise, the

verifier Rejects.

3 PROPOSED GENERALIZED RING SIGNATURE

In this section, we introduce a generalized ring signature

scheme based on the original ElGamal signature scheme.
In an ElGamal signature scheme, a large prime number p

and a primitive element g in ZZp are assumed to be made

publicly known. The signer can select a random d 2 ZZp�1 as

her private key. Then, the public key is computed from

e ¼ gd mod p.
Let m be the message to be signed. The signer randomly

selects a one-time secret l 2 ZZp�1 and computes� ¼ gl mod p.

Then she computes � ¼ ðm� d�Þl�1 mod p� 1. The signa-

ture for messagem is defined as the pair ð�; �Þ. The signature

can be verified if gm ¼ e��� mod p is true.
The construction of a ring signature requires existential

forgery. According to [17] and [23], the ElGamal signature

scheme is existentially forgeable with a generic message

attack. In fact, there are two well-known levels of forgeries:

one-parameter forgery and two-parameter forgery.
For one-parameter forgery, select c 2 ZZp�1 arbitrarily, if

we let � ¼ gcemod p and � ¼ ��mod p� 1, then it is easy

to see that ð�; �Þ is a valid signature for the message

m ¼ c� mod p� 1. However, this forgery is easily detect-

able since �þ � ¼ 0 mod p� 1, we will not use this method

of forgery.
For the second level of forgeries [23], the actual message

signer selects ai 2 ZZp�1 and bi 2 ZZ�p�1 arbitrarily for each

i ¼ 1; 2; . . . ; n, i 6¼ s. Define

�i ¼ gaiebii mod p; ð4Þ

�i ¼ ��ib�1
i mod p� 1; ð5Þ

mi ¼ ai�i mod p� 1; ð6Þ

then it can be shown that ð�i; �iÞ is a valid signature of

message mi.
Define

giðai; biÞ ¼ ðmi; �i; �iÞ;
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then the inverse gi is easy to compute. However, if we
compose gi with the project mapping pi, where

piðmi; �i; �iÞ ¼ mi;

then the inverse of fi ¼ pi � gi is computationally difficult.
In fact, the inverse of fi, shown in Fig. 2, is a one-way
trapdoor function over ZZp�1 � ZZ�p�1 7!ZZp�1.

In the proposed ring signature scheme, the same
combining function described in (1) can still be used. The
assumption for the existence of a collision-resistance hash
function h remains the same. However, instead of a publicly
defined ideal symmetric encryption algorithm E, we can
reduce it to a hash function h, thus we can replace EhðmÞðxÞ
with hðm;xÞ as described in [18].

Comparing to the original RSA-based ring signature
scheme, for a generalized ring signature scheme, all ring
members can share the same prime number p and all
operations can be performed in the same domain ZZp.
Therefore, no expansion is necessary. We can assume that
the private key of the ith ring member Ai 2 S is di 2 ZZ�p,
i ¼ 1; 2; . . . ; n, and the corresponding public key of the ring
member is given by ei ¼ gdi mod p.

We will now describe the ring-sign and ring-verify
procedures, shown in Fig. 3, below.

ring-sign ðm;S; ds; sÞ. Given a message m to be signed,
her private key ds, and the sequence of public keys
e1; e2; . . . ; en of all the ring members, the signer computes
a ring signature as follows:

1. Pick a random glue value. The signer picks an
initialization value v uniformly at random from ZZp.

2. Create a signature forgery ð�i; �iÞ for message mi.
The purpose of this step is to forge a signature for
some message mi for each of the n� 1 nonsigner
ring members using the two-parameter forgery. To
achieve this goal, the actual signer selects ai 2 ZZp�1

and bi 2 ZZ�p�1 arbitrarily for each i ¼ 1; 2; . . . ; n,
i 6¼ s, then ð�i; �iÞ can be derived from

giðai; biÞ ¼ ðmi; �i; �iÞ:

3. Solve for mis . Suppose that the index for the signer
is is. Let

visþ1 ¼hðm; vÞ;
visþ2 ¼hðm; visþ1 �misþ1Þ;

..

.

vis�1 ¼hðm; vis�2 �mis�2Þ;
vis ¼hðm; vis�1 �mis�1Þ;

where the indices are all in ZZn. Therefore, visþn ¼ vis .
To glue the ring, let

vis �mis ¼ v:

Equivalently,

mis ¼ v� vis :

4. Sign mis using the signer’s trapdoor permutation.
The signer uses her knowledge of the trapdoor
information to sign the message mis and obtain the
signature ð�s; �sÞ. To do so, the actual signer As first
selects a random l uniformly from ZZ�p, such that
gcdðl; p� 1Þ ¼ 1. The signature for message mis is
ð�i; �iÞ ¼ ðgl mod p; ðmis � di�iÞl�1 mod p� 1Þ.

5. Output the ring signature. The signature on the
message m is defined as

�� ¼ ðS; i0; vi0 ;m1; . . . ;mn;�1; �1; . . . ; �n; �nÞ;

where i0 is randomly selected from ZZn.

ring-verify ðm;��;SÞ. A verifier can verify an alleged

signature

�� ¼ ðS; i0; vi0 ;m1; . . . ;mn;�1; �1; . . . ; �n; �nÞ

on the message m as follows:

1. Verify the trapdoor permutations. For i ¼ 1;
2; . . . ; n, the verifier checks the following equation:

gmi ¼ e�ii �
�i
i mod p:

If it is satisfied, the verifier continues the rest of the

verification. Otherwise, the verifier Rejects.
2. Verify the ring equation. The verifier checks that

the mi’s satisfy the fundamental equation starting
from i0 with value vi0

vi0 ¼h
�
m;mi0þn�1 � h

�
m;mi0þn�2

� h m; � � � � hðm;mi0 � vÞ � � �ð Þ
��
:

ð7Þ
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If the ring equation is satisfied, the verifier Accepts
the signature as valid. Otherwise, the verifier
Rejects.

3.1 Security Analysis

Similar to [1] and [18], the identity of the signer is
unconditionally protected with the proposed ring signa-
ture scheme. This is because for each k and v, regardless
of the signer’s identity, the ring signature has exactly
pn�1 solutions according to (4), (5), and (6), and all of
them can be chosen by the signature generation
procedure with equal probability without depending on
any complexity-theoretic assumptions or on the random-
ness of the oracle.

The soundness of the ring signature scheme is computa-
tional since the ring signature cannot be stronger than the
individual signature scheme used by the possible signer.

Theorem 1. The generalized ring signature scheme based on
ElGamal signature scheme is secure against adaptive chosen-
message attack in the random oracle model.

Proof. To prove this theorem, we only need to prove that in
the random oracle model, any forgery algorithm A with
nonnegligible probability of a new ring signature for m0

by analyzing polynomially many ring signatures for
other chosen message m 6¼ m0 can be turned into an
algorithm B, which inverts one of the trapdoor one-way
functions fi on random inputs with nonnegligible
probability.

Assume there exists a forging algorithm A with
nonnegligible probability in creating a forgery, where
the algorithm accepts the public keys and is given oracle
access to a ring signing oracle. In producing a valid ring
signature that was not presented to the signing oracle
with a nonnegligible probability, algorithm A can work
adaptively, querying the oracle at arguments that may
depend on previous answers.

Note that the mapping fi : ZZp�1 � ZZ�p�1 7!ZZp�1 defined
by pi � gi is a surjection in Fig. 2, which means that all
signatures can be generated this way. It is computation-
ally easy to compute the function gi and its inverse;
however, the computation of the inverse of fi is
computationally infeasible. That is the computation of
ai, bi such that ðai; biÞ ¼ f�1

i ðmiÞ for i 2 f1; 2; . . . ; ng is
computationally infeasible.

Algorithm B uses algorithm A as a black box on
inputs f1; f2; . . . ; fn and a random m, in order to find
a value ðai; biÞ ¼ f�1

i ðmÞ for some i 2 f1; 2; . . . ; ng. A
must query the oracle h with the message that it is
forging for a signature. Assume the probability that A
forges the jth signature that it sends to the oracle h
is nonnegligible. We denote this message by m0.
Algorithm B begins by guessing randomly this
index j, the probability in guessing the correct value
should be nonnegligible.

Algorithm B simulates A’s oracle in the following
way. When A makes a query to oracle h, the query is

answered by a uniformly chosen value; however, if the
same value is being queried twice, the answer should be
the same. Algorithm B simulates the ring signature oracle

by providing a random vector ði0; vi0 ;m1;m2; . . . ;mn;

�1; �1; �2; �2; . . . ; �n; �nÞ as a ring signature to any

query m. It then adjusts the random answers to queries
to support the correctness of the ring equation (7) for

these messages. To do so, B choose randomly n� 1

values z1; z2; . . . ; zn�1 and set hðm; vþ f1ða1; b1ÞÞ ¼ z1 and
hðm; zi þ fiþ1ðaiþ1; biþ1ÞÞ ¼ ziþ1, s u c h t h a t zn ¼ v.

Note that A cannot ask oracle queries that will limit
B’s freedom of choice, before providing m to the
signing oracle, since all the values v, z1; . . . ; zn are

chosen randomly by B and cannot be guessed in
advance by A.

In order to simulate the oracle h, algorithm B checks
whether k ¼ hðm0Þ. If k 6¼ hðm0Þ (or if A has not yet
queried its jth query to the oracle h), then each query to
h is answered randomly, unless the value of this query
has already been determined by B, in which case it is
answered with the predetermined value. Note that, so
far, the simulated oracles are statistically close to the real
oracles, and thus in particular, A cannot distinguish
between the real oracles and the simulated oracles. It
remains to simulate the oracle h for k ¼ hðm0Þ. The goal
of algorithm B is to compute ðai; biÞ ¼ f�1

i ðmÞ, for some i.
The basic idea is to slip the value m as the “gap” between
the output and input values of two cyclically consecutive
h’s along the ring equation of the final forgery, which
forces A to close the gap by providing the corresponding
ai, bi in the generated signature.

Assume that the ith h was queried before the
ði� 1Þth h. B will guess which query corresponds
to the ith h and which query corresponds to the
ði� 1Þth h. In fact, if the input to the ith h was z,
then B will set the output of the ði� 1Þth h to be
zþm. All other queries are answered randomly.

Note that since m is a random value, the simulated
oracle h cannot be distinguished from the real oracles, and
therefore, with nonnegligible probability, A will output a
signature ði0; vi0 ;m1;m2; . . . ;mn;�1; �1; �2; �2; . . . ; �n; �nÞ
to a message m0. Moreover, with nonnegligible prob-
ability, there exists i 2 f1; . . . ; ng such that fiðai; biÞ ¼ m
as desired. tu

4 GENERALIZED MULTISIGNER RING SIGNATURE

A multisigner ring signature enables more signers to be

involved in signing the message. When multiple signers

work together in generating a ring signature, it may

result in a higher level of confidence or broader coverage

on the source of the ring signature. As an example, a

multisigner ring signature can be generated to enforce

cross-organizational involvement in message leaking.
In this section, we propose a generalized multisigner ring

signature scheme. We start with some definitions.

Definition 1 (generalized ring member). In the original ring

signature scheme, each ring member is a single user. When a

ring member consists of an arbitrary number of message

signers, then the ring member is called a generalized ring

member.

Definition 2 (generalized multisigner ring signature). For

a ring signature, if each ring member is a generalized ring

member and the signature of each generalized ring member is a
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multisignature, then this ring signature is called a general-
ized multisigner ring signature.

The basic idea of the generalized multisigner ring
signature is similar to the generalized ring signature. In a
generalized ring signature, there are n trapdoor one-way
functions, where n is the number of possible ring members.
Each ring member corresponds to one trapdoor one-way
function with a single private key. In a generalized multi-
signer ring signature, instead of n possible individual ring
members, there are n possible generalized ring members,
each generalized ring member is composed of an arbitrary
number of signers that generates a multisignature [24]. The
generalized ring members do not need to contain the same
number of signers. The corresponding multisignature
determines the number of actual signers. To achieve
efficiency, the multisignature scheme proposed in [24] can
be used as the trapdoor one-way function since in this
scheme, when a multisignature is generated with the
knowledge of multiple private keys, the length and verifica-
tion time of the multisignature is constant (i.e., not a linear
function with respect to the number of signers involved).

The generalized multisigner ring signature also bears
some similarity with the threshold ring signature. The
major difference between the generalized multisigner ring
signature and the threshold ring signature [18] is that for a
threshold ring signature, all the n possible signers are
equally possible in generating the ring signature, while only
t are the actual signers. However, for the proposed
generalized multisigner ring signature scheme, this is not
necessarily true. Moreover, in a generalized multisigner
ring signature, the “deep throat” may include members of
cross-organizations such as members from financial orga-
nization and also members from management organization.
This can be illustrated clearly in Example 1 below.

Example 1. Suppose the possible signers’ subset is A, B, C,

D, and E. For a two-out-of-five threshold ring signature,
any two users could possibly be the message signers.

However, for a generalized ring signature, the general-
ized ring members could be fA;Bg, fC;Dg, fC;D;Eg,
fA;B;Eg. Then, the generalized ring signature has either
two or three signers since we are unable to determine

which generalized ring member is the actual signer.

It is computationally infeasible to determine the actual
number of trapdoors involved in creating the ring signature
and determine the actual signer of the multisignature if the
generalized ring members have different number of signers
except that one of the multisignature is actually generated
with the knowledge of the trapdoor information. Therefore,
the number of actual signers is lower bounded by the
generalized ring members with the least number of signers.

The multisignature scheme proposed in [24] is based on

a variation of the ElGamal signature of the following form.
Signing. Randomly select l 2 ZZ�p�1 and compute

�¼gl mod p, �¼dm�l�mod p�1. Then, ð�; �Þ is a signature.
Verification. The signature can be verified if

em ¼ ��g� mod p

is true.

Assume that a subset consists of t signers with public

keys e1; e2; . . . ; et that wish to sign the same message m. The

group’s public key is defined as

e ¼
Yt
i¼1

ei mod p:

The generation of a multisignature can be described as

follows:

1. Each signer randomly selects a number li 2 ZZp�1,
then computes

�i ¼ gli mod p;

and

� ¼
Yt
i¼1

�i mod p:

2. Each signer solves the following equation:

�i ¼ dim� li�mod p� 1;

where di is his private key, and li is a random

number that he selected from ZZp�1. Define

� ¼
Xt
i¼1

�i mod p� 1:

The multisignature ð�; �Þ for message m can be verified if

em ¼ g��� mod p

is true.
Similar to the original ElGamal signature scheme, this

variation of ElGamal signature is also existentially forgeable

with two-parameter forgery: the actual signer selects

a 2 ZZp�1, b 2 ZZ�p�1 arbitrarily and computes

� ¼ gaeb mod p;

� ¼ �a�mod p� 1;

m ¼ b�mod p� 1;

then it can be shown that ð�; �Þ signs m.
For a multisignature, a subset consists of t signers with

public keys e1; e2; . . . ; et. To forge a signature for a

message m, the actual signer randomly selects a 2 ZZp�1;

b 2 ZZ�p�1. Let � ¼ gaðe1e2 . . . etÞb mod p, � ¼ �a�mod p� 1,

and m ¼ b�mod p� 1. Then, ð�; �Þ is a valid signature of

the message m since ð�; �Þ passes the verifications as

ðe1e2 � � � etÞm ¼ ��g� mod p:

The ring-sign and ring-verify of the generalized multi-

signer ring signature scheme can be defined similar to the

generalized ring signature scheme described in Section 3.

The detailed description will not be repeated here.

4.1 Security Analysis

The security of the generalized multisigner ring signature

depends on the security of 1) the individual ElGamal

signature scheme, 2) the ElGamal multisignature scheme,
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and 3) the generation of the generalized multisigner ring
signature from the ElGamal multisignatures.

The security of 1) the individual ElGamal signature
scheme and 2) the ElGamal multisignature have been
analyzed in [23] and [24], respectively. For item 3), the
only difference between the generalized ring signature
scheme and the generalized multisigner ring signature
scheme is that for the generalized ring signature, each
generalized ring member corresponds to an ElGamal
signature, while for the generalized multisigner ring
signature, each generalized ring member corresponds to
either an ElGamal signature or an ElGamal multisignature.
Similar to Theorem 1, we can prove the following theorem.

Theorem 2. The generalized multisigner ring signature scheme
is secure against adaptive chosen-message attack in the random
oracle model.

5 CONVERTIBILITY OF THE PROPOSED RING

SIGNATURE

In this section, we will prove that the proposed generalized
ring signature scheme is convertible. A ring signature is
called convertible if it contains the following two algorithms:

. ring-convert. The real signer As of a ring signature ��
can provide nonrepudiation evidence to a verifier
for the originality of the ring signature.

. ring-convert-verify. Given a ring signature ðm;��0Þ
and a set of public keys of the ring, the verifier can
determine whether ðm;��0Þ is a valid ring signature
generated by the ring member As.

For a convertible ring signature scheme, besides the two
security requirements for ring signature schemes, there is
an additional requirement:

. Unconvertibility against nonsigner. The advantage
that a ring member Ai, i 6¼ s, can successfully
convert a ring signature to pass the ring-convert-
verify is negligible.

5.1 Convertibility of RSA-Based Ring Signature

The RSA-based ring signature scheme proposed in [1] is not
designed to be convertible. In other words, the actual signer
is unable to provide nonrepudiation evidence to a verifier
for the originality of the ring signature. To achieve
convertibility, a modification of the original ring signature
scheme was proposed in [16]. However, we point out that
the modified scheme cannot ensure nonrepudiation evi-
dence of the actual message signer. Below, we will present a
simple improvement so that the RSA-based ring signature
can be convertible.

5.1.1 Modification of ring-sign

In order for the actual signer to convert the RSA-based ring
signature and provide nonrepudiation evidence for the
originality of the ring signature, it was proposed to embed
an extra parameter t in [16]. More specifically, it was
proposed to substitute k ¼ hðmÞ with k ¼ hðmktÞ and the
ring-sign ðm;SÞ with ring-sign ðm;S; tÞ, where t ¼ hðx1; . . . ;
xs�1; xsþ1; . . . ; xn; rÞ, and r 2 f0; 1gb is a randomly chosen
secret value.

5.1.2 ring-convert

To convert the ring signature, As discloses

ðx1; . . . ; xs�1; xsþ1 . . . ; xn; rÞ:

5.1.3 ring-convert-verify

The verification of the convertibility includes two steps:

1. The ver i f i e r checks w hether ðx1; . . . ; xs�1;
xsþ1; . . . ; xnÞ 	 �� is satisfied, where �� is defined in
(3). If it is satisfied, then it continues to the next step.
Otherwise, the verifier Rejects the signature.

2. Check whether

t ¼ hðx1; . . . ; xs�1; xsþ1 . . . ; xn; rÞ:

If the verification is successful, then the verifier
Accepts it as the real signer. Otherwise, the verifier
Rejects.

5.1.4 Problem

From the definition, convertibility requires that the actual
ring signer provides nonrepudiation evidence to a verifier
for the originality of the ring signature. However, the
disclosure of ðx1; . . . ; xs�1; xsþ1 . . . ; xn; rÞ only conveys the
information that t can be generated through

t ¼ hðx1; . . . ; xs�1; xsþ1 . . . ; xn; rÞ;

while the required nonrepudiation evidence cannot be
guaranteed. More specifically, for the proposed solution, r
cannot provide nonrepudiation evidence of the actual
message signer As since it cannot be linked to the identity
of the actual message signer. In fact, other ring members
can also impersonate As by concealing r in t and generating
the ring signature.

5.1.5 The Proposed Improvement

We can solve this problem by redefining t in the ring-sign

algorithm as follows:

t ¼ hðsignsðmÞkrÞ;

where m is the message to be signed, signsðmÞ is the
signature ofm generated byAs, and r 2 f0; 1gb is a randomly
selected secret. The randomness of r can eliminate the
previously generated signatures from being reused.

In the ring-convert algorithm, As discloses

signsðmÞkr:

The convertibility can be verified similarly.
Comparing to the original ring signature, only parameter t

is new. The security analysis on signer ambiguity and
unforgeability of the original scheme still holds true. The
unconvertibility against nonsigner is true because nobody is
able to generate the signature of message m on behalf of As.

5.2 Convertibility of the Generalized Ring Signature
Scheme

5.2.1 ring-convert

The generalized (multisigner) ring signature scheme is
unique in its convertibility, which enables the actual
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message signer to provide nonrepudiation evidence to the
originality of the ring signature. The convertibility relies on
the knowledge of the discrete logarithm of l ¼ log�s that As

is randomly selected from ZZ�p to close the ring during the
ring signature generation. The computation of l from �s is a
Discrete Logarithm Problem (DLP), which is computation-
ally infeasible.

The actual signer As cannot simply disclose l since
otherwise the private key of As can be computed. The actual
message signer As can prove that she possess the discrete
logarithm l of �s by signing the message m and generating
signlðmÞ, with l as the private key and �s as the public key.
In this way, As can provide nonrepudiation evidence to a
verifier that she knows the discrete logarithm of �s.

5.2.2 ring-convert-verify

To verify the convertibility, after successfully verifying the
ring signature, the verifier only needs to check that signlðmÞ
is a valid signature for the message m generated with the
public key �s.

6 CONCLUSION

In this paper, we first introduce a generalized ring
signature based on the original ElGamal signature scheme.
Comparing to the ring signature construction based on
RSA scheme, in the proposed generalized ring signature
scheme, all ring members can share the same prime
number and all operations can be performed in the same
domain. The generalized ring signature scheme is a
convertible ring signature that enables the actual message
signer to prove to a verifier that only she is capable of
generating the ring signature. Moreover, we can construct a
generalized multisigner ring signature scheme from a
generalized ring signature scheme and multisignatures to
increase the level of confidence or to enforce cross-
organizational information leaking with high efficiency.
The security analysis shows that both schemes are secure
against adaptive-chosen message attacks in the random
oracle model.
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