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A (t,n) secret sharing divides a secret into n shares in such a way that any t or more than t
shares can reconstruct the secret; but fewer than t shares cannot reconstruct the secret. In
this paper, we extend the idea of a (t,n) secret sharing scheme and give a formal definition
on the (n, t,n) secret sharing scheme based on Pedersen’s (t,n) secret sharing scheme. We
will show that the (t,n) verifiable secret sharing (VSS) scheme proposed by Benaloh can
only ensure that all shares are t-consistent (i.e. any subset of t shares defines the same
secret); but shares may not satisfy the security requirements of a (t,n) secret sharing
scheme. Then, we introduce new notions of strong t-consistency and strong VSS. A strong
VSS can ensure that (a) all shares are t-consistent, and (b) all shares satisfy the security
requirements of a secret sharing scheme. We propose a strong (n, t,n) VSS based on Bena-
loh’s VSS. We also prove that our proposed (n, t,n) VSS satisfies the definition of a strong
VSS.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Secret sharing schemes were introduced by both Blakley [2] and Shamir [20] independently in 1979 as a solution for safe-
guarding cryptographic keys. Secret sharing schemes have been studied extensively in the literature. In a secret sharing
scheme, a secret s is divided into n shares by a dealer and shared among n shareholders in such a way that any t or more than
t shares can reconstruct this secret; but fewer than t shares cannot reconstruct the secret s. Such a scheme is called a (t,n)
secret sharing, denoted it as (t,n) SS.

Shamir’s (t,n) SS is based on the interpolating polynomial and is information-theoretically secure. In general, we assume
that the dealer who divides the secret and distributes shares to shareholders without making any mistake. Any shareholder
must unconditionally trust that the received share is valid. In 1985, Chor et al. [6] extended the notion of the original secret
sharing and presented a notion of verifiable secret sharing (VSS). The property of verifiability means that shareholders are able
to verify that their shares are consistent. VSS [1,9] is a fundamental tool for many researches in cryptography, such as secure
multi-party computation [7,16,12] and Byzantine agreement [4]. There are papers to address the optimal round complexity
of VSS [14,10,17], to propose multi-secrets VSS [5,21,8], and to use VSS and the Byzantine agreement protocol against the
mobile adversary attack [3,22,19].

In 1990, Ingemarsson and Simmons [13] considered the secret sharing without the assistance of a mutually trusted third
party. The basic idea of their proposed (t,n) SS is that there are n dealers (shareholders) who want to generate and share a
master secret s jointly for some special applications. Each shareholder Pi first selects a random secret si and the master secret
s is determined by s ¼

Pn
i¼1si ¼ s1 þ � � � þ sn. Each shareholder shares his selected secret si with other shareholders using Sha-

mir’s (t,n � 1) SS. Thus, any shareholder has received n � 1 shares from other shareholders. Any subset of t shareholders
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know their own selected secrets (i.e. t secrets) and work together to reconstruct n � t other secrets. Thus, any subset of t
shareholders can reconstruct the master secret. In other words, this proposed secret sharing scheme enables mutually dis-
trusted shareholders to set up a (t,n) SS. However, there is a potential problem in this scheme. Since the number of shares
kept by each shareholder is proportional to the number of shareholders involved, the storage and management of shares be-
comes very complicated.

The verifiability is an important property in the secret sharing scheme. A verifiable secret sharing scheme enables all
shareholders to work together to verify that their shares are t-consistent (i.e. any subset of t shares defines the same secret)
without revealing the secret and the corresponding shares. In a secret sharing involving multiple dealers, the property of
verifiability is more desirable since these dealers are mutually distrusted.

In this paper, we extend the basic idea of a (t,n) secret sharing scheme and give a formal definition on a secret
sharing scheme with mutually distrusted dealers, denoted it as (n, t,n) SS, in which each shareholder also acts as a
dealer. This scheme was originally proposed by Pedersen [18] in 1991. Our defined (n, t,n) SS is information-theoret-
ically secure which is the same as Shamir’s (t,n) SS. In addition, the size of each share of this scheme is the same as
the size of the secret. Furthermore, we will show that the (t,n) VSS proposed by Benaloh can only ensure that all
shares are t-consistent; but shares may not satisfy the security requirements of a (t,n) SS. More specifically, Benaloh’s
VSS cannot guarantee that at least t shares are needed to reconstruct the secret. We introduce new notions of strong t-
consistency and strong VSS. A strong VSS can ensure that (a) all shares are t-consistent, and (b) all shares satisfy the
security requirements of a secret sharing scheme. We propose a strong (n, t,n) verifiable secret sharing scheme, de-
noted it as strong (n, t,n) VSS, based on Benaloh’s scheme. We prove that our proposed VSS satisfies the definition
of a strong VSS.

The rest of this paper is organized as follows: In the next section, we review Shamir’s (t,n) SS. In Section 3, we first re-
view the scheme proposed by Pedersen [18] in 1991 and then we give a formal definition on this scheme as (n, t,n) SS. In
Section 4, we define new notions of strong t-consistency and strong VSS. In Section 5, we propose a strong (n, t,n) VSS.
We conclude in Section 6.

2. Review of Shamir’s (t,n) SS

In Shamir’s (t,n) SS based on the Lagrange interpolating polynomial, there are n shareholders P ¼ fP1; . . . ; Png and a mutu-
ally trusted dealer D. The scheme consists of two algorithms:

Scheme 1. Shamir’s (t,n) SS

1. Share generation algorithm: The dealer D first selects a random polynomial f(x) of degree t � 1:
f ðxÞ ¼ a0 þ a1xþ � � � þ at�1xt�1, such that s = a0 and all coefficients a0,a1, . . . ,at � 1 are in a finite field Fp ¼ GFðpÞ with
p elements. D computes n shares (s1,s2, . . . ,sn) as
s1 ¼ f ð1Þ; s2 ¼ f ð2Þ; . . . ; sn ¼ f ðnÞ:
The dealer distributes each share si to shareholder Pi secretly.
2. Secret reconstruction algorithm: For any t shares ðsi1 ; . . . ; sit Þ where {i1, . . . , it} � {1,2, . . . ,n}, the secret s can be recon-

structed using the Lagrange interpolating formula.

We note that the above algorithms satisfy the basic requirements of the secret sharing scheme, that are, (a) with knowl-
edge of any t or more than t shares, shareholders can reconstruct the secret s; and (b) with knowledge of any t � 1 or fewer
than t � 1 shares, shareholders cannot reconstruct the secret s. Shamir’s scheme is information-theoretically secure since the
scheme satisfies these two requirements without making any computational assumption. For more information on this
scheme, readers are referred to the original paper [20].

3. Review of Pedersen’s (n,t,n) SS

In this section, we give a formal definition on the (n, t,n) secret sharing scheme, denoted it as (n, t,n) SS, in which each
shareholder also acts as a dealer. This scheme was originally proposed by Pedersen [18] in 1991.

Intuitively, each dealer (shareholder) in this model wants to participate to generate and share a master secret. Each
dealer selects a random secret, called this secret as sub-secret. Each dealer can share this sub-secret with other dealers
by generating sub-shares using Shamir’s share generation algorithm. With the help of the homomorphism property [1],
each shareholder can combine all sub-shares into a master share. Then, the master secret can be reconstructed based
on any t or more than t master shares by using Shamir’s secret reconstruction algorithm. We now describe the (n, t,n)
SS below.

Definition 1 ((n, t,n) SS). Suppose that there are n dealers (shareholders) P ¼ fP1; . . . ; Png. A (n, t,n) SS consists of four
algorithms (see Table 1):



Table 1
(n, t,n) SS.

S S1 � � � Sn Master shares

P1 s11 � � � sn1 s1 ¼
Pn

j¼1sj1

P2 s12 � � � sn2 s2 ¼
Pn

j¼1sj2

..

. ..
. . .

. ..
. ..

.

Pn s1n � � � snn sn ¼
Pn

j¼1sjn

L. Harn, C. Lin / Information Sciences 180 (2010) 3059–3064 3061
Scheme 2. (n, t,n) SS

1. Master secret generation algorithm: Each dealer Pi selects a random sub-secret Si independently and the master secret
can be determined as S ¼

Pn
i¼1Si ¼ S1 þ � � � þ Sn.

2. Sub-share generation algorithm: For each sub-secret Si, dealer Pi selects a random polynomial fi(x) of degree t � 1, such
that Si = fi(0) and uses Shamir’s (t,n) SS to generates sub-shares, sij = fi(xj), for j = 1,2, . . . ,n, for other dealers. Pi sends
each sij to other dealer Pj secretly, for j = 1,2, . . . ,n, and j – i. Each dealer Pi will have n sub-shares, sji, for j = 1, . . . ,n.

3. Master share generation algorithm: Each shareholder (dealer) Pi with n sub-shares, sji, for j = 1, . . . ,n, computes the mas-
ter share si as si ¼

Pn
j¼1sji ¼

Pn
j¼1fjðxiÞ.

4. Master secret reconstruction algorithm: With knowledge of any t or more than t master shares, the master secret
S ¼

Pn
j¼1fjð0Þ can be reconstructed using the Lagrange interpolating formula.
In Ingemarsson–Simmons’s proposal [13], each dealer needs to keep n sub-shares secretly. However, in Scheme 2, accord-
ing to the property of additive homomorphism defined in [1], each dealer only needs to keep one master share secretly. Fol-
lowing theorem proves that the master secret can be reconstructed based on any t or more than t master shares according to
the property of additive homomorphism.

Theorem 1. With knowledge of any t or more than t master shares as we have described in master share generation algorithm,
shareholders can reconstruct the master secret using Shamir’s secret reconstruction algorithm.

Let S be the domain of a secret and T be the domain of the shares corresponding to the secret. We say that the function
FI : T t ! S is an induced function of the (t,n) SS for each I � {1,2, . . . ,n} with jIj = t. This function defines the secret s based on
any subset of t shares si1 ; . . . ; sit . s ¼ FIðsi1 ; . . . ; sit Þ, where I = {i1, . . . , it}.

Proof. Let I = {i1, . . . , it} be any subset in the set {1, . . . ,n}, then we obtain the following equations:
S1 ¼ FIðs1i1 ; . . . ; s1it Þ;
S2 ¼ FIðs2i1 ; . . . ; s2it Þ;

..

.

Sn ¼ FIðsni1 ; . . . ; snit Þ:

Then, we have
S ¼
Xn

i¼1

Si ¼ S1 þ S2 þ � � � þ Sn; ð1Þ

¼ FIðs1i1 ; . . . ; s1it Þ þ FIðs2i1 ; . . . ; s2it Þ þ � � � þ FIðsni1 ; . . . ; snit Þ; ð2Þ
¼ FIððs1i1 þ s2i1 þ � � � þ sni1 Þ; . . . ; ðs1it þ s2it þ � � � þ snit ÞÞ; ð3Þ

¼ FI

Xn

j¼1

sji1 ; . . . ;
Xn

j¼1

sjit

 !
; ð4Þ

¼ FIðsi1 ; . . . ; sit Þ: ð5Þ
We note that Eq. (1) follows from the master secret generation algorithm; Eq. (2) follows from the sub-secret reconstruction
using Shamir’s secret reconstruction algorithm; Eq. (3) follows from the additive homomorphism property; and Eq. (5) im-
plies that the master secret can be reconstructed using Shamir’s secret reconstruction algorithm with t master shares
si1 ; . . . ; sit . h
Remark 1. It is easy to observe that the above (n, t,n) SS uses Shamir’s (t,n) SS as building block and is based on the additive
homomorphism property. Since Shamir’s (t,n) SS is information-theoretically secure, this (n, t,n) SS is also information-the-
oretically secure. In addition, the size of each master share is identical to the size of each share in Shamir’s (t,n) SS. The same
approach can be applied on any linear (t,n) SS [15] to convert any (t,n) SS into an efficient (n, t,n) SS.
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4. Definitions of strong t-consistency and strong VSS

A verifiable secret sharing scheme enables all shareholders to work together to verify that their shares are t-consistent. In
other words, without revealing the secret and the corresponding shares, all shareholders can work together to verify that any
subset of t shares defines the same secret. In a secret sharing scheme involving multiple dealers, the property of verifiability
is more desirable since these dealers are mutually distrusted. In the (n, t,n) SS, the master share of each shareholder is a com-
bination of n sub-shares generated by n mutually distrusted dealers. Thus, verifiability of these master shares is very
important.

Benaloh [1] presented a notion of t-consistency to determine whether a secret sharing scheme is t-consistent or not. We
describe this notion below.

Definition 2 (t-consistency). A set of n shares s1, . . . ,sn is said to be t-consistent, if any subset of t shares reconstructs the
same secret.

Benaloh [1] observed that the shares s1, . . . ,sn in Shamir’s (t,n) SS are t-consistent if and only if the interpolation of the
points (1,s1), . . . , (n,sn) yields a polynomial of degree at most t � 1. This implies that if the interpolating polynomial of n
shares is with degree at most t � 1, then all shares are t-consistent. However, the property of t-consistency does not guar-
antee that all shares satisfy the security requirements of a (t,n) SS. For example, if the interpolating polynomial of n shares
is with degree t � 2, then all shares are both (t � 1)-consistent and t-consistent. The polynomial with degree t � 2 can be
reconstructed with only t � 1 (which is less than the threshold, t) shares. This condition violates the security requirement
of a (t,n) SS, that is, at least t shares are needed to reconstruct the secret. Benaloh’s VSS [1] can only verify that all shares
are generated by a polynomial with degree at most t � 1. Thus, shares may not satisfy the security requirement of a (t,n)
SS.

Remark 2. Ghodosi et al. [11] have shown that, in Shamir’s (t,n) SS, if the coefficient of highest term, at � 1, of a (t � 1)th
degree polynomial is non-zero, it can increase the probability of successfully guessing the secret s 2 Fp from 1/p to 1/(p � 1)
when t � 1 shareholders collude. In other words, Shamir’s (t,n) SS scheme is not information-theoretically secure if the
degree of the polynomial is t � 1 exactly.

We propose new notions of t-consistency and strong verifiable secret sharing that ensures all shares are generated by a
polynomial with degree t � 1 exactly.

Definition 3 (Strong t-consistency). A set of n shares are said to be strong t-consistent, if (a) any subset of t or more than t
shares can reconstruct the same secret, and (b) any subset of t � 1 or fewer than t � 1 shares cannot reconstruct the same
secret (i.e. t 6 n).
Definition 4 (Strong VSS). All shares in a strong verifiable secret sharing scheme can be verified to satisfy the strong t-
consistency.

In a strong (t,n) VSS or (n, t,n) VSS, if shares are generated by a linear polynomial, then the polynomial is with degree t � 1
exactly. It is obvious that if all shares in Shamir’s (t,n) SS are generated by a polynomial with degree t � 1 exactly, then (a) all
shares are t-consistent, and (b) all shares satisfy the security requirements of a (t,n) SS. On the other hand, if all shares in
Shamir’s (t,n) SS are generated by a polynomial with degree at most t � 1, then this can only guarantee that all shares
are t-consistent.

In the next section, we propose a strong (n, t,n) VSS that enables all shareholders to work together to verify that their
shares are generated from a polynomial with degree t � 1 exactly.

Remark 3. If dealer generates shares of a (t,n) SS using a polynomial with degree at most t � 1 and all shareholders do
not know the degree of the polynomial, the security can still be maintained if the probability of needing fewer than t
shares to reconstruct the secret is low. However, the probability of needing fewer than t shares to reconstruct the
secret depends on how the dealer to select polynomial with degree at most t � 1 in share generation process. If the
dealer selects a random polynomial with degree less than or equal to t � 1, the probability of needing fewer than t
shares to reconstruct the secret is (t � 1)/t. On the other hand, if the dealer selects a polynomial with random
coefficient at � 1, the probability of needing fewer than t shares to reconstruct the secret is 1/p, where p is the modulus.
No matter how the dealer selects a polynomial, in VSS, shareholders still need to verify that the dealer follows the right
procedures to select polynomial since shareholders do not trust the dealer. Benaloh’s VSS cannot provide this type of
verifiability.
5. Strong (n,t,n) VSS

Our strong (n, t,n) VSS is based on Benaloh’s (t,n) VSS. Note that Benaloh’s (t,n) VSS cannot provide strong VSS. Our
scheme includes following steps:
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Scheme 3. Strong (n, t,n) VSS

1. Each dealer (shareholder) Pi follows (n, t,n) SS as described in Section 3 to select a random primary sub-polynomial
fi(x) (corresponding to the primary sub-secret) with degree t � 1 exactly such that Si = fi(0). Then, each dealer Pi uses
Shamir’s (t,n) SS to compute and distribute the sub-shares = fi(xj), for j = 1, . . . ,n, of the primary sub-secret to all other
dealers. After receiving all sub-shares from other dealers, each dealer Pi computes the primary master share as
si ¼

Pn
j¼1sji.

2. Each dealer (shareholder) Pi selects k (say k = 100) random secondary sub-polynomials with degree t � 1 exactly.
Then, each dealer Pi computes and distributes sub-shares rl

ij of each secondary sub-secret to all other dealers using
Shamir’s share generation algorithm, where j = 1, . . . ,n, l = 1, . . . ,100. At the end of this step, each shareholder Pi has
the primary master share si corresponding to the primary master secret and 100 secondary master shares R ¼ frl

ig,
for l = 1, . . . ,100, corresponding to 100 secondary master secrets, where rl

i ¼
Pn

j¼1rl
ji ¼ rl

1i þ � � � þ rl
ni.

3. All shareholders work together to determine to open any subset A (say jAj = 50) of secondary master shares corre-
sponding to secondary master secrets. Each shareholder needs to reveal secondary master shares in subset A to
the public.

4. All shareholders can verify whether their revealed secondary master shares are generated from polynomials with
degree t � 1 exactly and consistently. If this verification is passed for all secondary master shares in subset A, all
shareholders (dealers) can be convinced that the degree of all ‘‘unopened” secondary polynomials is t � 1 exactly
with very high probability.

5. All shareholders (dealers) work together again to reveal the additive sum of the primary master share and each sec-
ondary master share in the subset R � A. For example, shareholder Pi reveals si þ rl

i, for every rl
i 2 R� A. All share-

holders can verify whether revealed values are generated from polynomials with degree t � 1 exactly and
consistently. If this verification is passed for all master shares and each secondary master share in subset R � A,
all shareholders (dealers) can be convinced that the degree of polynomial corresponding to the primary master
secret is t � 1 exactly.
Theorem 2. The proposed ðn; t;nÞ VSS satisfies the definition of a strong VSS.
Proof. In Step 3, all shareholders select a random subset A and reveal corresponding secondary master shares. These public
information will be used to verify whether their secondary master shares are generated from polynomials with degree t � 1
exactly. Since the subset A is selected randomly, if all opened secondary polynomials are with degree t � 1 exactly in Step 4,
it ensures that the remaining 50 unopened secondary sub-polynomials are with degree t � 1 exactly with very high
probability.

In Step 5, if the interpolating polynomial of the additive sum of the primary master share and each unopened secondary
master share is with degree t � 1 exactly, all shareholders can be convinced that the interpolation of the primary master
shares yields a polynomial, denoted it as f ðxÞ ¼

Pn
i¼1fiðxÞ, with degree at most t � 1. In (n, t,n) VSS, a shareholder also acts as a

dealer who has contributed a random primary sub-polynomial in f(x). The additive sum of all primary sub-polynomials forms
the polynomial f(x). As long as the degree of the polynomial f(x) is at most t � 1 and the degree of the primary sub-
polynomial selected by the shareholder is t � 1 exactly, the shareholder can conclude that the degree of the polynomial f(x)
must be t � 1 exactly.

We now consider the situation when there are c colluded shareholders to fail our proposed VSS protocol. In the following
analysis, we restrict the parameter c in a (n, t,n) SS to satisfy c < t and t 6 n � c. The first condition, c < t, is to limit colluded
shareholders to reconstruct the secret by themselves. The second condition, t 6 n � c, is to guarantee that the honest
shareholders can always reconstruct the secret. We consider two possible attacks from colluded shareholders. The first
attack is that each colluded shareholder selects a primary sub-polynomial with degree less than t � 1 in Step 1. Then, the
primary polynomial of the master secret is still with degree t � 1 exactly since the primary polynomial is the additive sum of
all sub-polynomials selected by shareholders. This attack cannot affect our proposed VSS. The second attack is that some
colluded shareholders select primary sub-polynomials with degree larger than t � 1 in Step 1. Then, the primary polynomial of
the master secret is with degree larger than t � 1. Our proposed VSS protocol can detect this attack since the secondary
polynomials in Step 5 are determined by all shareholders and colluded shareholders cannot influence the outcome of the VSS
protocol by themselves completely. In other words, in Step 5, honest shareholders can verify that the revealed values are
generated from polynomials with degree larger than t � 1.We want to point out that if the degree of the primary sub-
polynomial selected by each shareholder is t � 1 exactly, the highest coefficient of the additive sum of all primary sub-
polynomials can still be zero. This will result a polynomial with degree t � 2. However, the probability of this case is 1/p
which can be ignored.

In Step 5, by revealing the additive sum of the primary master share and each secondary master share does not leak
any information of the primary master share. Thus, all primary shares and the master secret are unconditionally
protected. h
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6. Conclusions

In this paper, we extend the basic definition of a (t,n) secret sharing scheme and give a formal definition of the (n, t,n)
secret sharing scheme with multiple dealers. We show that the (t,n) VSS proposed by Benaloh can only ensure that all shares
are t-consistent; but shares may not satisfy the security requirements of a (t,n) secret sharing scheme. We introduce new
notions of strong t-consistency and strong VSS. We also propose a strong (n, t,n) VSS based on Benaloh’s VSS, and prove that
our proposed VSS satisfies the definition of a strong VSS.
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