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Recently, a polynomial-based (k, n) steganography and authenticated image sharing (SAIS) scheme was
proposed to share a secret image into n stego-images. At the same time, one can reconstruct a secret
image with any k or more than k stego-images, but one cannot obtain any information about the secret
from fewer than k stego-images. The beauty of a (k, n)-SAIS scheme is that it provides the threshold prop-
erty (i.e., k is the threshold value), the steganography (i.e., stego-images look like cover images), and au-
thentication (i.e., detection of manipulated stego-images). All existing SAIS schemes require parity bits
for authentication. In this paper, we present a novel approach without needing parity bits. In addition,
our (k, n)-SAIS scheme provides better visual quality and has higher detection ratio with respect to all pre-
vious (k, n)-SAIS schemes.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Steganography comes from the Greek word steganos, and means
concealed writing. It is an important research subject in the field of
cryptography and information security. Steganography hides the se-
cret message into a cover media to generate a stego-media, on
which the existence of the embedded secret cannot be detected. Steg-
anographic technique can overcome the conventional cryptographic
approach, providing new solutions for secure data transmission with-
out being suspect to censors. The cover media in a steganography
scheme could be image, audio, video, document, … , etc. However, if
the stego-media is lost or corrupted, the secret data cannot be recon-
structed. Therefore, several secret sharing techniques have been pro-
posed to overcome this weakness. In this paper, we discuss a secret
image sharing scheme with steganography and authentication func-
tions. The cover media in our scheme is a digital image (referred to
as cover image), and the image which the secret data is embedded
is called as a stego-image.

A (k, n) secret image sharing scheme, where k≤n, divides a secret
message into n shadow images in such a way that one can reconstruct
the secret image with any k or more than k shadow images, but one can-
not obtain any information of the secret image from fewer than k shadow
images. There are two major categories in secret image sharing scheme:
one is the visual cryptography, and the other is the polynomial-based
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secret image sharing. In visual cryptography, participants may photo-
copy their shadows on transparencies and stack them on an overhead
projector to visually decode the secret through the human visual system
without hardware and computation. Although visual cryptography has
the staking-to-see property, it has the poor visual quality of a recon-
structed image. On the contrary, the polynomial-based secret image
sharing can recover a distortion-less secret image by using Lagrange in-
terpolation. The polynomial-based secret image sharing is to hide secret
pixels as constant terms in (k−1)-degree polynomials using Shamir's
secret sharing scheme [1]. The authors in [2] used all coefficients in a
(k−1)-degree polynomial for embedding secret pixels, and reduced
shadow images to size 1/k of the size of the secret image. In [3], the
size of shadow image was further reduced by using Huffman code.
Shadow images in [2,3] are noise-like and suspect to censorships.
Therefore, it is desirable to design a (k, n) secret image sharing scheme
using steganography so that shadow images looks like a cover image.
Moreover, if we consider the authentication ability to detect themanip-
ulation of shadow images, this scheme is called a (k, n) steganographic
and authenticated image sharing (SAIS) scheme. Such a (k, n)-SAIS
scheme has three key properties. First, it has the steganography proper-
ty. The proposed (k, n)-SAIS scheme has meaningful shadow images
that look like cover images. In this paper, we use the term “stego-im-
ages” in steganography to represent shadow images in the proposed
SAIS scheme. Second, it has the threshold property that one can recon-
struct the secret image from any k stego-images. However, any (k−1)
or fewer than (k−1) stego-images cannot reveal any information
about the secret image. Lastly, it has authentication ability. One
can verify the correctness of stego-images to prevent any acciden-
tally generating error stego-images or any intentionally presenting fake
stego-images.
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Fig. 1. The stego-block of Lin et al.'s (k, n)-SAIS scheme.
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Some (k, n)-SAIS schemes were proposed in [4–7]. Lin et al. em-
bedded eight shared bits and one parity bit (for a total of nine bits)
in a four-pixel block to construct a (k, n)-SAIS scheme [4]. For precise
presentation, in this paper we refer to the parity bits as authentica-
tion bits. Embedding nine bits in a four-pixeled block is intended to
make the stego-image look like the cover image. On the other hand,
one parity bit is used to detect whether this block has been tampered
with. Although any accidentally generating wrong stego-images can
be detected, the intentionally modifying stego-images by dishonest
shareholders can be hard to detect. In [5], Yang et al. solved this dis-
honesty problem and simultaneously improved the visual quality of
stego-images by rearranging nine bits in a block. Afterward, the
schemes in [6,7] enhanced authentication ability and the visual qual-
ity of stego-images. Chang et al. [6] enhanced the detection ratio of
manipulated blocks in a fake stego-image by using four authentica-
tion bits in a block based on the Chinese remainder theorem. In [7],
the authors employed linear cellular automata, digital signatures,
and hash functions to reduce the number of modified bits in a block
so that better visual quality can be guaranteed.

All existing (k, n)-SAIS schemes [4–6] require additional authentica-
tion bits to authenticate stego-images. In [7], the SAIS scheme enables
double authentication. One can verify the signature of a stego-image
to assure the integrity of each stego-image by using a public key. How-
ever, an invalid signature only shows the stego-image that has been
modified; but not the tampered stego-blocks. In this paper, we consider
a (k, n)-SAIS scheme without any additional authentication bits. All in-
volved participants perform authentication with a vote-based protocol.
Every participant authenticates other shadows, and votes for stego-
images that he/she trusts. According to the result of a majority vote,
the authenticity of the stego-images is then determined by peers. The
proposed (k, n)-SAIS is based on symmetric bivariate polynomials and
it enhances the visual quality of stego-images. The following sections
are organized as follows. In Section 2, we review existing (k, n)-SAIS
schemes. The motivation and key contributions of our paper are de-
scribed in Section 3. The proposed (k, n)-SAIS scheme and the concept
of bivariate polynomial are introduced in Section 4. Details on the eval-
uation and experiment are given in Section 5, and Section 6 is the
conclusion.

2. Related works

2.1. Shamir's Secret Sharing Scheme

In 1979, Shamir [1] published a landmark paper that a (k, n)
secret-sharing scheme can be constructed by hiding a secret data in
the constant term f0 of a (k−1)-degree polynomial f(x)=(f0+ f1x+
…+ fk−1x

k−1)mod P, where P is a prime number. By using i∈[1, n],
a dealer can generate n shadows as (i, f(i)), for i=1, 2, …, n. Any k
shadows (say (1, f(1)), …, (k, f(k))) can jointly reconstruct this (k
−1)-degree polynomial f(x) following Lagrange interpolation formu-
la and the secret data can be derived from f0= f(0).

f xð Þ ¼
Xk
i¼1

f ið Þ ∏
1≤j≤k; j≠i

x−ið Þ
j−ið Þ modP:

With this (k−1)-degree univariate polynomial, Thien et al. [2] em-
bedded secret pixels into k coefficients in f(x). Thien et al.'s (k, n) secret
image sharing scheme is briefly described below. We first divide a secret
image into b non-overlapping k-pixel blocks, and every j-th (0≤ j≤b−1)
block includes the secret pixels (sjk, sjk+1,…, sjk+k-1). The (k−1)-degree
polynomial fj(x)= (sjk+sjk+1x+sjk+2x

2+…+sjk+k−1x
k−1)GF(28)

represents a shadow pixel associated with this j-th block, where x is
often a shadow identity. By choosing n shadow identities i∈[1, n], we
then obtain n shadow pixels fj(i). We repeat this process for all b blocks
to generate n shadows. Obviously, shadow size is 1/k of the size of the
secret image since we embed k secret pixels to one shadow pixel each
time. In decryption, the polynomial fj(x) can be reconstructed from
any k shadow pixels so that we can recover the secret image. Here, we
use the Galois Field GF(28) to embed 256 grayscales in a secret image
without distortion. Some schemes adopt an ordinary arithmetic opera-
tion (i.e., mod 251) for simple calculation. However, undermod251, the
gray-scale values >250 should be truncated to 250 and this causes dis-
tortion. In this paper, we use GF(28) for our experiment to derive a loss-
less secret image.

2.2. Lin et al.'s (k, n)-SAIS Scheme

Lin et al. proposed a (k, n)-SAIS scheme [4] by combining stega-
nography and authentication to prevent fake stego-images. Every k
secret pixel is embedded into (f0, f1, …, fk−1) in a (k−1)-degree Sha-
mir's polynomial f(x). The output of f(x) is an eight-bit tuple (s1, s2, ⋯,
s8), and one parity bit p for authentication which is even or odd parity
depending on the binary parity sequence generated by the secret key.
To reduce the distortion of image as much as possible, nine bits (i.e.,
eight shared bits and one parity bit) are embedded into a four-
pixeled stego-block. The input of the polynomial is chosen from the
upper left pixel in this stego-block, and nine bits replace the last
three least significant bits (LSBs) in the other three pixels to construct
a stego-image.

Suppose that the original four-pixeled block in a cover image is

, where X=(x1, x2, ⋯, x8), V=(v1, v2, ⋯, v8), W=(w1, w2, ⋯, w8),

and Z=(z1, z2, ⋯, z8). Then, insert (s1, s2, ⋯, s8) and p into to derive
X̂ , V̂ , Ŵ , and Ẑ as follows.

X̂ ¼ x̂1; x̂2; ⋯; x̂8ð Þ ¼ x1; x2; ⋯; x8ð Þ;
V̂ ¼ v̂1; v̂2; ⋯; v̂8ð Þ ¼ v1; v2; ⋯; v5; p; s1; s2ð Þ;
Ŵ ¼ ŵ1; ŵ2; ⋯; ŵ8ð Þ ¼ w1;w2; ⋯;w5; s3; s4; s5ð Þ;
Ẑ ¼ ẑ1; ẑ2; ⋯; ẑ8ð Þ ¼ z1; z2; ⋯; z5; s6; s7; s8ð Þ:

8>>><
>>>:

ð1Þ

The stego-block block of the Lin et al.'s (k, n)-SAIS scheme is

shown in Fig. 1, where the underlining of x̂=(x1, x2, ⋯, x8) implies
that (x1, x2, ⋯, x8) is the input of f(x).

2.3. Yang et al.'s (k, n)-SAIS Scheme

Because a participant can derive parity information from his/her
own stego-image, he/she can maliciously make a fake stego-image
that can pass authentication but compromises the reconstruction.
In [5], Yang et al. avoided this authentication weakness to prevent
dishonest participants from cheating. The enhanced authentication
ability comes from the use of a hash function with a secret key to
generate the authentication bit p. The inputs of HMAC are the
block ID and all 31 bits in the stego-block exclusive to the authenti-
cation bit. Yang et al.'s (k, n)-SAIS scheme also rearranged nine bits
in the stego-block to improve the visual quality of the stego-image.



Fig. 2. The stego-block of Yang et al.'s (k, n)-SAIS scheme. Fig. 4. The stego-block of Eslami et al.'s (k, n)-SAIS scheme.
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The modified pixels X̂ , V̂ , Ŵ , and Ẑ in a stego-block are shown in
Eq. (2).

X̂ ¼ x̂1; x̂2; ⋯; x̂8ð Þ ¼ x1; x2; ⋯; x6; s1; s2ð Þ;
V̂ ¼ v̂1; v̂2; ⋯; v̂8ð Þ ¼ v1; v2; ⋯; v5;p; s3; s4ð Þ;
Ŵ ¼ ŵ1; ŵ2; ⋯; ŵ8ð Þ ¼ w1;w2; ⋯;w5;w6; s5; s6ð Þ;
Ẑ ¼ ẑ1; ẑ2; ⋯; ẑ8ð Þ ¼ z1; z2; ⋯; z6; s7; s8ð Þ:

8>>><
>>>:

ð2Þ

The stego-block is shown in Fig. 2. Note that (x1, ..., x6) in X and
(w5, w6) in W are used as the eight-bit input for f(x). The number of
modified bits in X̂ , V̂ , Ŵ and Ẑ are (2, 3, 2, 2) which is different
from (0, 3, 3, 3) in Lin et al.'s scheme. This uniform arrangement of
nine pixels reduces distortion, and thus Yang et al.'s scheme enhance
the visual quality of the stego-image.

2.4. Chang et al.'s (k, n)-SAIS Scheme

To enhance authentication ability, Chang et al.'s scheme [6] used
four authentication bits in a stego-block. However, the schemes in
[4,5] only use one authentication bit in a stego-block. In [6], four
CRT-based authentication bits are computed and combined with wa-
termark bits to produce four parity bits (p1, p2, p3, p4). Modified pixels
X̂ , V̂ , Ŵ , and Ẑ are shown in Eq. (3).

X̂ ¼ x̂1; x̂2; ⋯; x̂8ð Þ ¼ x1; x2; ⋯; x5; s1; s2;p1ð Þ;
V̂ ¼ v̂1; v̂2; ⋯; v̂8ð Þ ¼ v1; v2; ⋯; v5; s3; s4; p2ð Þ;
Ŵ ¼ ŵ1; ŵ2; ⋯; ŵ8ð Þ ¼ w1;w2; ⋯;w5; s5; s6;p3ð Þ;
Ẑ ¼ ẑ1; ẑ2; ⋯; ẑ8ð Þ ¼ z1; z2; ⋯; z5; s7; s8; p4ð Þ:

8>>><
>>>:

ð3Þ

The stego-block is shown in Fig. 3. Chang et al.'s scheme only uses
five bits (x1, …, x5) in X as the input for f(x). Using five most signifi-
cant bits in X as the input may degrade the visual quality of the
stego-image for some cases.

2.5. Eslami et al.'s (k, n)-SAIS Scheme

Eslami et al. [7] employed a cellular automata (CA)method to con-
struct a (k, n)-SAIS scheme. The polynomial-based (k, n)-SAIS scheme
shares k secret pixels at each iteration with eight shared bits and then
computes one authentication bit in [4,5] and four authentication bits
in [6]. The CA-based (k, n)-SAIS scheme shares (k−1) secret pixels at
a time. Then the hash values of these (k−1) secret pixels are jointly
computed as eight bits for authentication. Afterwards, the k eight-
bit tuples are embedded by CA-based secret-sharing into eight bits
Fig. 3. The stego-block of Chang et al.'s (k, n)-SAIS scheme.
(s1,…, s8) for each stego-block. The modified pixels X̂ , V̂ , Ŵ , and Ẑ
in the stego-block are shown in Eq. (4).

X̂ ¼ x̂1; x̂2; ⋯; x̂8ð Þ ¼ x1; x2; ⋯; x6; s1; s2ð Þ;
V̂ ¼ v̂1; v̂2; ⋯; v̂8ð Þ ¼ v1; v2; ⋯; v6; s3; s4ð Þ;
Ŵ ¼ ŵ1; ŵ2; ⋯; ŵ8ð Þ ¼ w1;w2; ⋯;w6; s5; s6ð Þ;
Ẑ ¼ ẑ1; ẑ2; ⋯; ẑ8ð Þ ¼ z1; z2; ⋯; z6; s7; s8ð Þ:

8>>><
>>>:

ð4Þ

The stego-block is shown in Fig. 4. These eight bits (s1,…, s8) are
not only share information bits but also include authentication infor-
mation. The dealer signs the stego-image and other related informa-
tion using his/her private key PRD. Then, the signature and the
corresponding public key PUD are embedded into the stego-image
for authentication. Finally, Eslami et al.'s scheme provides double au-
thentication which one can use PUD to verify whether a stego-image
is tampered with in the first verification phase. In the second phase,
one can check every k eight-bit tuples (k−1 secret pixels and one au-
thentication pixel) to detect tampered stego-blocks within the recon-
structed information. Eslami et al.'s scheme requires fewer bits in
each pixel to embed data, and thus enhance the visual quality of
stego-image. Also, it employs cellular automata instead of Lagrange's
polynomial to reduce the computational complexity from O(nlog2n)
to O(n).

3. Motivation and contribution

A SAIS scheme is often measured in terms of the visual quality of
the stego-image through the peak-signal-to-noise ratio (PSNR) as
well as in terms of authentication ability through the detection ratio
of tampering (DR). However, good image quality and authentication
ability have contradict characteristics. More authentication bits
imply a higher DR; but this in turn reduces the PSNR. For example,
Chang et al.'s scheme enhances authentication ability by using four
authentication bits in a stego-block, but it degrades the stego-image
quality. Alternatively, Eslami et al.'s scheme uses double authentica-
tion to reduce the number of authentication bits used in stego-
images. However, an invalid signature in Eslami et al.'s scheme only
shows whether the stego-image is modified. If an attacker changes
all bits in the stego-blocks but maintains the same eight shared bits
(s1,…, s8), we cannot locate the tampered stego-blocks. Although
Eslami et al.'s scheme does not require authentication bit, its authen-
tication ability is not exactly the same as Yang et al.'s scheme and
Chang et al.'s scheme.

For achieving a high PSNR, it is reasonable to design a SAIS scheme
that can locate tampered stego-blocks as the schemes in [5,6], but
meantime does not require authentication bits. In this paper, we pro-
pose a vote-based SAIS scheme to provide authentication without au-
thentication bits. All involved participants can mutually authenticate
other participants. The validity of a stego-image is authenticated by
a vote-based protocol. Every participant can authenticate other
stego-images by voting for the stego-image that he/she trusts. After-
ward, a majority vote on the authenticity of the stego-images is deter-
mined by the participants.
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4. The Proposed (k, n)-SAIS Scheme

A (k−1)-degree univariate polynomial is used to construct (k, n)-
SAIS schemes in [4–6]. Our (k, n)-SAIS scheme is based on a symmet-
ric bivariate polynomial. We use the symmetric property to verify
stego-images without using authentication bits.

4.1. Secret Sharing Scheme using Bivariate Polynomial

A bivariate polynomial is a polynomial with two variables. A (k−1)-
degree bivariate polynomial has the form f x; yð Þ ¼ ∑0≤i;j≤ k−1ð Þaijxiyj, on
which some (k, n) verifiable secret sharing schemes and proactive secret
sharing schemes were proposed [8–13]. Most of them used non-
symmetric bivariate polynomials to achieve different features of verifi-
able secret sharing schemes. In [9], the authors also showed an uncondi-
tionally secure (k, n) verifiable secret sharing scheme based on
symmetric bivariate polynomial. A so-called bivariate polynomial
f(x, y) of degree (k−1) is said to be symmetric if f(x, y)= f(y, x).
This symmetric polynomial can be easily implemented by setting all co-
efficients aij and aji, 0≤ i, j≤(k−1), to be equal.

It can be easily verified that f x; yð Þ ¼ ∑0≤i;j≤ k−1ð Þaijxiyj=
∑0≤i;j≤ k−1ð Þajixiyj= f(y, x) since aij=aji. In this paper, we use this sym-
metric bivariate polynomial in Eq. (5) to construct our (k, n)-SAIS
scheme.

f x; yð Þ ¼
a00 a01y … a0 k−1ð Þy

k−1

a01x a11xy ⋯ a1 k−1ð Þxy
k−1

⋮ ⋮ ⋱ ⋮
a0 k−1ð Þx

k−1 a1 k−1ð Þx
k−1y ⋯ a k−1ð Þ k−1ð Þx

k−1yk−1

0
BBB@

1
CCCA GFð28Þ: ð5Þ

In Eq. (5), there are only 1+2+3+…+k=k(k+1)/2 distinct
coefficients in f(x, y). Therefore, we can embed secret data into
these distinct coefficients by sharing f(j, y), 1≤ j≤n, to n stego-
images where j is the identifier of participant j. From (5), the polyno-
mial f(j, y) is reduced to bj0+ bj1y+…+bj(k−1)y

k−1.
This symmetric bivariate (k−1)-degree polynomial also has the

same threshold property as Shamir's polynomial [9]. The threshold
property implies that one can reconstruct f(x, y) from any k polyno-
mials (say f(1, y),f(2, y), …, f(k, y)). We then have the following k
polynomials.

f 1; yð Þ ¼ b10 þ b11yþ…þ b1 k−1ð Þy
k−1

;

f 2; yð Þ ¼ b20 þ b21yþ…þ b2 k−1ð Þy
k−1

;

⋮
f k; yð Þ ¼ bk0 þ bk1yþ…þ bk k−1ð Þy

k−1
:

8>>><
>>>:

ð6Þ

By using the symmetric bivariate (k−1)-degree polynomial, we can
encrypt k(k+1)/2 pixels into k shared pixels (bj0, bj1, …, bj(k−1)) for
the j-th stego-image, 1≤ j≤n. So, the shadow size is k/(k(k+1)/2)=2/
(k+1) times the secret image, which is different from 1/k by using Sha-
mir's scheme. However, the symmetric property of bivariate polynomial
can be used in our vote-based SAIS scheme to save the authentication
bits.

4.2. The Encryption/Decryption Algorithm

The proposed (k, n)-SAIS scheme is based on symmetric bivariate
polynomial f(x, y) of degree (k−1). Every k(k+1)/2 secret pixels are
embedded into the coefficients in f(x, y). The k shared pixels are ar-
ranged carefully in k(k+1)/2 stego-blocks for the j-th stego-image
in order to obtain a better PSNR. On the other hand, the symmetric
property is adopted to authenticate the validity of a stego-image mu-
tually among all participants. Algorithm 1 and Algorithm 2 are en-
cryption and decryption procedures, respectively. Description and
diagrammatical representation of notations in our algorithms are de-
fined below.
Algorithm 1. Encryption of the proposed (k, n)-SAIS scheme

Input: I; O(j), j∈[1, n]; /* a secret image and n cover images */
Output: Ô jð Þ, j∈[1, n]; /* n stego-images */

For i=1 to (W×H)/(k(k+1)/2) do /* process every k(k+1)/2-
pixeled unit at each iteration */

{ Gain I(i); /* obtain an unit from I */
{ For j =1 to n do

{ Gain B(i, j); /* obtain an extended block from O(j) */
F(I(i), B′(i, j))=(s1(i, j), …, sk(i, j)); /* find k shared pixels (i.e., 8 k
shared bits) */
Put back 8 k shared bits into the null LSBs in B′(i, j) to obtain a stego-
extended block B̂ i; jð Þ;
/* As an example, for the proposed (3, n)-SAIS scheme, a stego-
extended block (embracing 6 stego-blocks) is shown in Fig. 5. The bi-
nary form of a shared pixel is s1(i, j)=(s1, 1(i, j), …, s1, 8(i, j)). There
are total 24 shared bits (i.e., 3 shared pixels) in (3, n)-SAIS scheme.
For simplicity, Fig. 5 shows the structure of B̂ 1; jð Þ. */
Put the stego- extended block B̂ i; jð Þ on Ô jð Þ;

}; /* end for j */
}; /* end for i */

The flow chart of our decryption is shown in Fig. 6. Any k stego-
images are first mutually verified by using the symmetric bivariate
polynomial. Suppose that the k stego-images are all valid. Every
stego-image should obtain (k−1) votes from others. Therefore, if
any one stego-image gains less than (k−1) votes we stop reconstruc-
tion and proceed with the authentication procedure with the help of
other (n−k) stego-images. Other participants vote for these k stego-
images. If the stego-image gains less than T votes from (n−1) partic-
ipants we consider this stego-image fake; otherwise it is a valid stego-
image.

At this time, a majority vote is used to carry out the authentica-
tion. Majority rule is a decision rule that selects the valid stego-
images which have a majority (more than half the votes). It is
reasonable to suppose more than half participants are honest. We
identify whether the involved stego-images obtain a plurality of
votes more numerous than manipulated stego-images. The number
of the most votes from other participants is (n−1) votes. Therefore,
a majority-voting threshold is chosen as T= ⌈(n−1)/2⌉. Since ⌈(n−
1)/2⌉= ⌊n/2⌋, it implies that we need a majority ⌊n/2⌋+1 honest par-
ticipants among all n participants to achieve the threshold. Obviously,
the collusion of participants above a certain threshold can allow a
fake stego-image to pass authentication. When choosing the thresh-
old T= ⌈(n−1)/2⌉, our (k, n)-SAIS can tolerate ⌊n/2⌋ colluded partici-
pants to compromise the authentication procedure.

Algorithm 2. Decryption of the proposed (k, n)-SAIS scheme

Input: Any k stego-images (say Ô 1ð Þ, Ô 2ð Þ, …, Ô kð Þ;
Output: I; /* verification of k stego-images and reconstruction of
the secret image */
Phase 1–1 (Verification Phase: k participants involved in
reconstruction):

For i=1 to (W×H)/(k(k+1)/2) do
{For j =1 to k do

{Every participant obtain polynomial f(A(i, j), y) from
his/her own B̂ i; jð Þ;

k participants mutually check the validity of the
B̂ i; j1ð Þ and B̂ i; j2ð Þ by f(A(i, j1), A(i, j2))= f(A(i, j2), A(i, j1)), where
j1, j2∈ [1, k] and j1≠ j2;

/* using the symmetric property of f(x, y) */
}; /* end for i */



Fig. 5. Arrange 24 shared bits (3 shared pixels: s1(1, j),s2(1, j),s3(1, j)) into B̂ 1; jð Þ uniformly for the proposed (3, n)-SAIS scheme.
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}; /* end for j */
If any stego-image gain less than (k−1) votes then go to

Phase 1–2;
Else {k stego-images are valid; go to Phase 2};

Phase 1–2 (Verification Phase: all n involved participants):
/* (1) stop reconstruction

(2) add other (n−k) stego-images to verify these k stego-
images */

Other (n−k) participants obtain polynomial f(A(i, j), y)
from his/her own B̂ i; jð Þ;

(n−k) participants verify these k stego-images by f(A(i, j1),
A(i, j2))= f(A(i, j2), A(i, j1)), where j1∈[k+1, n] and j2∈ [1, k];

If any stego-image gain less than T votes then the stego-
image is fake;

Else the stego-image is valid;
/* (1) a majority threshold T= ⌈(n−1)/2⌉ is used in the

vote-based scheme
Fig. 6. The flow chart of decryption for the proposed (k, n)-SAIS scheme.
(2) our (k, n)-SAIS can tolerate ⌊n/2⌋ colluded partici-
pants to compromise the authentication */

Stop reconstruction;
Phase 2 (Reconstruction Phase):

For i=1 to (W×H)/(k(k+1)/2) do
{For j =1 to k reconstruct f(A(i, j), y) from his/her own

B̂ i; jð Þ};
Derive a bivariate (k−1)-degree f(x, y) from k polyno-

mials f(A(i, 1), y), …, f(A(i, k), y);
Obtain the unit I(i) from all k(k+1)/2 coefficients in f(x, y);

}; /* end for i */
Reconstruct a secret image I from all units I(1), I(2), …, and

I W�H
k kþ1ð Þ=2

� �
;

Example 1. For the proposed (3, 3)-SAIS scheme, we embed 6 (=k(k+
1)/2) secret pixels into one stego-extended block (6 stego-blocks) for
each stego-image.

A 6-pixeled unit I(i)=( ) is shown in Fig. 7(a-1).

The generation polynomial used in GF(28) is x8+x4+x3+x2+1.
By embedding these six secret pixels into six distinct coefficients in
f(x, y), we have the following symmetric bivariate polynomial f(x,
y), as shown in Eq. (7) (also see Fig. 7(a-2)).

f x; yð Þ ¼ 28þ 123yþ 56y2 þ 123xþ 49xyþ 88xy2 þ 56x2 þ 88x2y
þ 95x2y2: ð7Þ

Given A(i, j)=HK((B′(i, j))∥ i∥ j∥W∥H)8, suppose that A(i, 1)=48,
A(i, 2)=184, and A(i, 3)=90. For stego- images #1, #2 and #3, the
following three polynomials f(A(i, j), y), j=1, 2, 3, are shown in
Eq. (8) (see Fig. 7(a-3)).

f 48; yð Þ ¼ 52þ 204yþ 242y2;
f 184; yð Þ ¼ 201þ 126yþ 53y2;
f 90; yð Þ ¼ 75þ 232yþ 92y2:

8><
>:

ð8Þ

According to Fig. 5, we arrange 24 shared bits (three shared
pixelss1(i, 1)=52, s2(i, 1)=204, and s3(i, 1)=242 for stego-image
#1; three shared pixels s1(i, 2)=201, s2(i, 2)=126, and s3(i, 2)=53
for stego-image #2; three shared pixels s1(i, 3)=75, s2(i, 3)=232,



(a-1) (a-2) (a-3)

(b-1) (b-2)

(c-1) (c-2)

(d-1) (d-2)

Fig. 7. Generation of stego-blocks for the proposed (3, 3)-SAIS scheme: (a) six secret pixels, f(x, y), and f(A(i, j), y), j=1, 2, 3 (b) stego-image #1 (c) stego-image #2 (d) stego-image #3.
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and s3(i, 3)=92 for stego-image #3) into one stego-extended block
(24 pixels). Fig. 7(b–d) shows 24 pixels in cover image and the
modified pixels in stego-image, and show how to embed the 24
shared bits.

Here, we demonstrate that every participant can authenticate
the validity of other stego-images. For example, participant #1 can
derive f(48, y), f(184, y), f(90, y), and A(i, 1)=48, A(i, 2)=184,
and A(i, 3)=90 from his/her stego-image and other two stego-
images. By verifying f(48, 184)= f(184, 48)=174 and f(48, 90)=
f(90, 48)=118, he/she can successfully authenticate stego-images #2
and #3. Consider the case in which a stego-extended block is tampered
with (say B̂ i;2ð Þ). There are three possible cases for tampering with
B̂ i;2ð Þ as follows.

Case (1) modified bits are in B′(i, 2) and do not include the shared
bits.
In this case, the polynomial f(184, y) is not modified since
the coefficients of f(184, y) are obtained from the shared
bits of s1(i, 2), s2(i, 2), and s3(i, 2). However, the modifica-
tions in B′(i, 2) result in A′(i, 2), which equals A(i, 2) with
the probability 1/256. So, f(48, A′(i, 2)) only has the same
value of f(148,48) =174 with a probability of 1/256 to
pass authentication. For example, if A′(i, 2)=183, then
f(48, 183)=14, and thus f(48, 183)≠ f(184, 48). Participant
#1 then successfully detects tampering in stego-image #2.

Case (2) modified bits are located in the shared bits of s1(i, 2), s2(i, 2),
and s3(i, 2).
In this case, the polynomial f(184, y) is modified to f′(184,
y), while the value of A(i, 2)=184 is not changed. Suppose
only one shared bit s1, 1(i, 2). Thus, we have s1, 1(i, 2)=73,
and then f′(184, y)=73+126y+53y2. Since f′(184, 48)=
46, participant #1 finds that f′(184, 48)≠ f(48, 84) and
then detects tampering.

Case (3) modified bits are located in both B′(i, 2) and the shared
bits (s1(i, 2),s2(i, 2),s3(i, 2)).
In this case, the polynomial f(184, y) and the value of A(i,
2) are both changed to f′(184, y) and A′(i, 2), respectively.
f(48, A′(i, 2)) and f′(184, A(i, 1)) have the same value
with probability 1/256. For example, if f′(184, y)=73+
126y+53y2 and A′(i, 2)= 183, then f(48, 183)=46 and
f′(184, 48)=46. Since they are not equal, tampering is
detected.

If every shadow gain two votes from other two participants, the
stego-images are authenticated successfully. We then proceed to
reconstruct f(x, y) from f(48, y), f(184, y) and f(90, y). Suppose we
only have two polynomials (say f(48, y) and f(184, y)). From f(48, y)
and f(184, y), we could derive six equations in Eq. (9). One can easily
verify the rank of these six equations is only 5. Actually, we cannot
solve these equations for six variables. By adding Eq. (10) from
f(90, y), we can solve a00=28, a01=123, a02=56, a11=49,
a12=88, and a22=95 fromEqs. (9) and (10). Finally,we recover six se-
cret pixels.

a00 þ 48� a01 þ 482 � a02 ¼ 52⇒a00 þ 48� a01 þ 105� a02 ¼ 52
a01 þ 48� a11 þ 482 � a12 ¼ 204⇒a01 þ 48� a11 þ 105� a12 ¼ 204
a02 þ 48� a12 þ 482 � a22 ¼ 242⇒a02 þ 48� a12 þ 105� a22 ¼ 242
a00 þ 184� a01 þ 1842 � a02 ¼ 201⇒a00 þ 184� a01 þ 58� a02 ¼ 201
a01 þ 184� a11 þ 1842 � a12 ¼ 126⇒a01 þ 184� a11 þ 58� a12 ¼ 126
a02 þ 184� a12 þ 1842 � a22 ¼ 53⇒a02 þ 184� a12 þ 58� a22 ¼ 53

8>>>>>>><
>>>>>>>:

ð9Þ
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Fig. 8.Modified LSBs in (3, 5)-SAIS scheme: (a) Lin et al.'s scheme: 3 stego-blocks have 1 MB and 2 AB (b) Yang et al.'s scheme: 3 stego-blocks have 1 MB and 2 AB (c) Chang et al.'s
scheme:3 stego-blocks have 1 MB and 2 AB (d) Eslami et al.'s scheme: 2 stego-blocks have 1 SB and 1 NB (e) the proposed scheme: 6 stego-blocks have 6 SB.
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a00 þ 90� a01 þ 902 � a02 ¼ 75⇒a00 þ 90� a01 þ 148� a02 ¼ 75
a01 þ 90� a11 þ 902 � a12 ¼ 232⇒a01 þ 90� a11 þ 148� a12 ¼ 232
a02 þ 90� a12 þ 902 � a22 ¼ 92⇒a02 þ 90� a12 þ 148� a22 ¼ 92

8><
>:

ð10Þ
□

5. Evaluation and experiment

5.1. Analysis of the PSNR and DR

It is observed that the schemes in [4–6] share every k secret
pixels into one shared pixel; Eslami et al.'s SAIS scheme shares
every (k−1) secret pixels into one shared pixel, and our scheme
embeds k(k+1)/2 secret pixels into k shared pixels. All SAIS
schemes [4–7] and our scheme have a stego-image size four times
(a) Jet (b-1) Lena: 5

(b-3) Baboon: 52.91 dB  (b-4) Elaine: 

Fig. 9. The reconstructed images and five stego-images for the proposed (3, 5)-SAIS sch
that of the secret image. We now briefly describe the stego-blocks
in the schemes in [4–7] and the stego- extended block in our
scheme.

The shared block (SB), the authenticated block (AB), the mixed
block (MB), and the non-embedded block (NB) are defined as fol-
lows. SB is a block that only has shared bits, and AB is a block that
only has authentication bits. MB has both shared bits and authenti-
cation bits, while NB does not embed any information. The aim of
NB is only to keep the stego-image size four times that of the secret
image. Since the schemes in [4–6] have one MB and (k−1) AB
((refer to Fig. 4 in [14])). Also, Lin et al.'s scheme and Yang et al.'s
scheme both have 9 modified bits in one MB and 1 modified bit in
one AB. However, Chang et al.'s scheme has 12 modified bits in
2.91 dB (b-2) Pepper: 52.91 dB 

52.90 dB (b-5) Boat: 52.91 dB 

eme:(a) a 256×256-pixeled secret image (b) five 512×512-pixeled stego-images.



Table 1
Description and diagrammatical representation of notations.

notation description diagrammatical representation

I I(i) I is the secret image with (W×H) pixels, which is divided into I(i) units, 1≤ i≤(W×H)/
(k(k+1)/2). Every unit I(i) has k(k+1)/2 pixels.

O(j) Ô jð Þ O(j), 1≤ j≤n, is the j-th cover image with (2 W×2H) pixels. There are (W×H) blocks.
Every block has four pixels Xi, Wi, Vi and Ui, 1≤ i≤(W×H). Suppose that xi is the pixel
value for Xi and its binary representation is (xi, 1, xi, 2, …, xi, 8). Other notations wi, vi and ui
follow similarly. On the other hand, Ô jð Þis the j-th stego-image after embedding the secret
image. Every stego-block has four pixels X̂ i , Ŵ i , V̂ i and Û i .

B(i, j) B̂ i; jð Þ B(i, j), 1≤ i≤(W×H)/(k(k+1)/2), is the i-th extended block in O(j). Every extended block
has k(k+1)/2 blocks. On the other hand, B̂ i; jð Þis the i-th stego-extended block in Ô jð Þ.
Every stego-extended block has k(k+1)/2 stego-blocks.

B′(i, j) B′(i, j) are the remaining bits which 8 k least significant bits are excluded from B(i, j).

F(⋅, ⋅) By using the unit I(i) (k(k+1)/2 pixels) as the k(k+1)/2 distinct coefficients in a bivariate
polynomial to generate a (k−1)-degree symmetric polynomial f(x, y). Then, we gain a
pixel A(i, j)=HK((B′(i, j))∥ i∥ j ∥W∥H)8, which is an eight-bit hash result of B′(i, j), the ex-
tended block ID “i”, the stego-image ID “j”, and the secret image sizeW and H. Suppose that
HK(·) is a keyed hash function, e.g., HMAC defined in RFC2104 requiring a secret K for
operation. Afterwards, we use A(i, j) in substitution for x in f(x, y) to calculate f(A(i, j), y)=
s1(i, j)+s2(i, j)y+…+sk(i, j)yk−1. = bk−1. Finally, we get 8 k shared bits F(I(i), B′(i, j))=
(s1(i, j), …, sk(i, j)).
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one MB and 4 modified bits in one AB. Eslami et al.'s scheme has
8 modified bits in one SB and (k−2) NB. The proposed scheme em-
beds 8 k shared bits into k(k+1)/2 stego-blocks. So, it has k(k+1)/
2 SB.
From the above description, we can easily derive the average
modified bits per stego-block for all (k, n)-SAIS schemes. Let the num-
ber of average modified bits per stego-block for Lin et al.'s scheme,
Yang et al.'s scheme, Chang et al.'s scheme, Eslami et al.'s scheme,

Unlabelled image
Unlabelled image
Unlabelled image
Unlabelled image
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and the proposed scheme be NLIN, NYAN, NCHA, NESL, and NPRO, respec-
tively. All these values are derived as follows.

NLIN ¼ NYAN ¼ 1� 9þ k−1ð Þ � 1ð Þ=k ¼ 1þ 8=kð Þ;
NCHA ¼ 1� 12þ k−1ð Þ � 4ð Þ=k ¼ 4þ 8=kð Þ;
NESL ¼ 1� 8þ k−2ð Þ � 0ð Þ= k−1ð Þ ¼ 8= k−1ð Þ;
NPRO ¼ k� 8ð Þ= k� kþ 1ð Þ=2ð Þ ¼ 16= kþ 1ð Þ:

8>><
>>:

ð11Þ

Since 6/(k+1)b4+(8/k), NPRObNLIN and NPRObNYAN. From the
values of 16/(k+1) and 1+(8/k), we have NPRO≈NCHA for 2≤k≤5,
and NPRObNCHA when k>6. Also, we have NPRO≤NESL for k=2, 3.
Eslami et al.'s scheme has the smallest value 8/(k−1) among these
schemes. The fewer modified LSBs cause the higher PSNR of stego-
image. Our modified bits are arranged uniformly across all stego-
blocks to achieve the better image quality. Experimental results
show that the proposed (3, 5)-SAIS scheme has the best PSNR
among all (3, 5)-SAIS schemes considered here.

Next, we evaluate authentication ability and estimate DR for all
SAIS schemes. The authentication bit in Lin at.'s scheme is simply cho-
sen to make this pixel even or odd parity as a binary parity sequence
generated by a secret key. Because a participant can determine parity
information from his/her own stego-image, he/she can maliciously
make a fake stego-image to pass authentication. So, Lin et al.'s scheme
does not have the authentication ability to prevent dishonest partici-
pants from malicious modifications as shown in [5]. Eslami et al.'s
scheme provides double authentication. One can verify the signature
of a stego-image to assure its integrity by using PUD. However, if an
attacker changes the bits in every (k−1) stego-blocks but maintains
the eight shared bits (s1,…, s8) as constant, tampering cannot be
detected. In this case, an invalid signature only shows that the
stego-image is modified, but we cannot locate the tampered stego-
blocks. The authentication ability of Eslami et al.'s scheme is not ex-
actly the same as Yang et al.'s and Chang et al.’ schemes, both of
which can locate tampered stego-blocks in stego-images, as shown
in Figs. 6, 7 and 8 in [5] and Fig. 9 in [6]. However, Eslami et al.'s
scheme only detects the invalidity of shared bits with probability
255/256, while it cannot detect whether tampering occurred beyond
shared bits. So, the DRs for the schemes by Lin et al., Yang et al., Chang
et al. and Eslami et al. are estimated as 0, 1/2 (i.e., one authentication
bit), 15/16 (i.e., four authentication bits), and 0, respectively.

Our scheme simultaneously uses shared bits for reconstruction
and authentication. We derive f(A(i, j), y) from stego-images, and
then use the symmetric property to mutually authenticate stego-
blocks by f(A(i, j1), A(i, j2))= f(A(i, j2), A(i, j1)), where j1≠ j2. The in-
puts of A(i, j1) and A(i, j2) are obtained from all bits in B′(i, j1) and B
′(i, j2). So, an attacker or dishonest participant cannot exactly derive
the input without the secret key K. Since the outputs of f(A(i, j1),
A(i, j2)) and f(A(i, j2), A(i, j1)) are both eight bits, authentication will
fail with probability 255/256. Yang et al.'s scheme and Chang et al.'s
scheme have DR=1/2 and DR=15/16 for a stego-block, respectively.
The propose scheme has DR=255/266 for a stego-extended block.
Although our DR is higher than Yang et al.'s and Chang et al.'s DR,
the detected block size is a stego-extended block of k(k+1)/2
stego-blocks. Yang et al.'s scheme and Chang et al.'s scheme have a
more precise detection area of one stego-block.

5.2. Experimental result and comparison

Using a (3, 5)-SAIS scheme as an example, the schemes in [4–6]
process three blocks at each iteration, and Eslami et al.'s scheme [7]
processes every two blocks. Meanwhile, our scheme processes an ex-
tended block (6 blocks) at each iteration. The modified LSBs in stego-
blocks for all schemes are shown in Fig. 8, where the number in the
rectangle is the number of modified bits in a pixel. Lin et al.'s scheme,
Yang et al.'s scheme and Chang et al.'s scheme have one MB and two
AB. Eslami et al.'s scheme has one SB and one NB. Our scheme has 6
SB.

From Fig. 8, Lin et al.'s (3, 5)-SAIS scheme shows an average num-
ber of modified bits per stego-block of NLIN=(9+1+1)/3=3.6 bits.
Although Yang et al.'s (3, 5)-SAIS scheme has the same number of
modified bits (i.e., NYAN=3.6 bits), the arrangement (2-3-2-2) is
more “flat” than (0-3-3-3) and thus yields a better PSNR. Chang et
al.'s (3, 5)-SAIS scheme and Eslami et al.'s (3, 5)-SAIS scheme result
in NCHA=6.6 bits and NESL=4 bits, respectively. The proposed (3,
5)-SAIS scheme also has NPRO =4 bits, and all modified LSBs are ar-
ranged uniformly across all 6 stego-blocks. All PSNRs of the stego-
images for these five (3, 5)-SAIS scheme are shown in Table 1. Five
images (namely, Lena, Pepper, Baboon, Elaine, and Boat) are used as
cover images, and Jet is used as the secret image. Notice that we
should embed an additional 2304 bits (i.e., a public key of 2048 bits
and a digital signature of 256 bits) into the stego-images for Eslami
et al.'s scheme. It is observed that the proposed (3, 5)-SAIS scheme
has the best result among all schemes. When compared with Chang
et al.'s (3, 5)-SAIS scheme, our (3, 5)-SAIS scheme even enhances
the quality of the stego-images by about 10 dB.

The PSNR of a stego-image for the proposed (k, n)-SAIS scheme,
where k≥3, can be estimated as follows.We first calculate the average
mean square error of a stego-image under our (k, n)-SAIS scheme. Let
N be the average modified bits per pixel. Since NPRO=16/(k+1), so
N=4/(k+1). Recalling that a stego-block has four pixels, thus we
have N≤1 for k≥3. This observation implies that the visual quality
of the stego-image will be degraded only by LSB for our (k, n)-SAIS
scheme, where k≥3. All pixels in a stego-image have the probability
4/(k+1) of changing their respective LSB. Let the pixel difference be
v, v∈[−1, 0, +1,], which is uniformly distributed with probability
f(v)dv. Since f(v) is uniformly distributed and thus can be considered
a constant, f=1/3, in the difference interval. The average mean

square error of a stego-image is 4= kþ 1ð Þ � ∑v∈ −1;0;þ1½ � f vð Þ � v2
� �

=

4= 3� kþ 1ð Þð Þ �∑v∈ −1;0;þ1½ � v2
�

=8/(3×(k+1)). Hence, the estimat-

ed PSNR is PSNRest=10×log 10(2552/(8/(3×(k+1))))dB. For k=3,
PSNRest=49.89 dB, which approximates the values in Table 2. Five
stego-images for our (3, 5)-SAIS scheme and the reconstructed secret
image are shown in Fig. 9.

To evaluate authentication ability, we focus on Yang et al.'s
scheme, Chang et al.'s scheme, and the proposed scheme. The other
two schemes with DR=0 either cannot avoid dishonest participants
(i.e., Lin et al.'s scheme) or cannot locate the tampered blocks in
some cases (i.e., Eslami et al.'s scheme). For the proposed (3, 5)-
SAIS scheme, we intentionally counterfeit a fake stego-image. As
shown in Fig. 10(a), a shrunk version of Lena is added to the upper
left corner in the Lena stego-image. Fig. 10(b) is the authentication
result for the proposed scheme. By the same manipulation, the au-
thentication results for Yang et al.'s scheme and Chang et al.'s
scheme are shown in Figs. 10(c) and (d). All localization areas in
Fig. 9(b–d) shows the rectangular shape of places that were tam-
pered with. The black color in the tampered area denotes the detec-
tion of manipulation, while the other areas pass authentication. The
proposed scheme shows DR≈255/256, and thus, the tampered area
is almost entirely black. However, our detected unit is a stego-
extended block (6 stego-blocks or 24 pixels) and thus cannot pre-
cisely indicate the tampered places. Fig. 10 (c) and (d) has the
same detected unit of a stego-block (4 pixels), and DR≈1/2 for
Yang et al.'s scheme is lower than DR≈15/16 for Chang et al.'s
scheme. So, there are fewer black stego-blocks in Fig. 10(c), which
one can still reveal the shrunken Lena. This implies that an attacker
has a greater possibility to generate a fake stego-image and pass au-
thentication under Yang et al.'s scheme.

Based on the above experimental results, Table 3 summarizes the
comparison of the (k, n)-SAIS schemes for the following items: (1)
the expansion of the stego-image, (2) the authentication capability,



Table 2
PSNRs of stego-images for five (3, 5)-SAIS schemes.

Lin et al.'s
scheme

Yang et al.'s
scheme

Chang et al.'s
Scheme

Eslami et al.'s
scheme

The proposed
scheme

Lena 43.82 dB 46.11 dB 42.28 dB 47.59 dB 52.91 dB
Pepper 43.78 dB 46.14 dB 42.30 dB 47.53 dB 52.91 dB
Baboon 43.81 dB 46.14 dB 42.31 dB 47.55 dB 52.91 dB
Elaine 43.77 dB 46.12 dB 42.29 dB 47.50 dB 52.90 dB
Boat 43.80 dB 46.10 dB 42.22 dB 47.51 dB 52.91 dB
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(3) the size of the detection unit, (4) the authentication bits in a
stego-block, (5) the average number of modified bits per stego-
block, and (6) the number of processed stego- blocks.

To consist with the first SAIS scheme [4], all schemes use a stego-
image four times larger than the secret image, even though some
schemes do not need to expand their stego-images by four times. For
example, when discarding the AB, the stego-image size in [4–6] can
be reduced by 4/k times of the secret image because AB is not required
in them in order to share secret pixels. Considering authentication capa-
bility, Lin et al.'s scheme is compromised by the dishonest participant
problem. As shown in [4], a dishonest participant can perform three
types of manipulations, namely, the unobvious modification of the
stego-image, the obvious modification of the stego-image, and the re-
placement of the stego-image. Any modification of stego-image in
Eslami et al.'s scheme is detected by verifying the signature, but it
only detects the invalidity of SB with probability 255/256 and cannot
Fig. 10. Authentication results: (a) a fake stego-image (b) authentication of the proposed
scheme.
locate modification areas if the tampering occurs at NB. Because of re-
moving authentication bits from the stego- extended block, our scheme
only coarsely indicates tampered areas with the size of k(k+1)/2
stego-blocks. In the proposed SAIS scheme, it is possible to reduce the
size of detection unit by changing some SB to MB. However, our small
PSNR is due to the fact that authentication bits are not required. The
changing some SB to MB apparently will degrade the PSNR of stego-
images. Our scheme enhances the PSNR at the cost of increasing the de-
tection size. All in all, form Table 3, our SAIS scheme outperforms other
SAIS schemes.

6. Conclusion

In this paper, we discuss the visual quality of stego-image (i.e., the
PSNR) and authentication ability (i.e., DR) of a (k, n)-SAIS scheme. A
(k, n)-SAIS scheme is proposed based on symmetric bivariate polyno-
mial. We combine both authentication and secret sharing features
into shared bits without needing additional authentication bits. The
validity of a stego-image is authenticated by a vote-based protocol.
Our (k, n)-SAIS scheme achieves high PSNR and DR as compared
with existing SAIS schemes.
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Table 3
Comparison of (k, n)-SAIS schemes.

Lin et al.'s scheme Yang et al.'s scheme Chang et al.'s Scheme Eslami et al.'s Scheme The proposed scheme

expansion of stego-image 4 4 4 4 4
authentication capability DR=0 DR=1/2 DR=15/16 DR=0 DR=255/256
the size of detection unit − 1 stego-block 1 stego-block − k(k+1)/2 stego-blocks
authentication bits in a stego-block 1 1 4 0 0
average number of modified bits
per stego-block

k 1+(8/k) 1+(8/k) 4+(8/k) 8/(k−1) 16/(k+1)
2 5 5 8 8 5.33
3 3.67 3.67 6.67 4 4
4 3 3 6 2.67 3.2
5 2.6 2.6 5.6 2 2.66
6 2.33 2.33 5.33 1.6 2.28

the number of processed stego-
blocks each time

k k stego-blocks (1 MB, (k
−1) AB)

k stego-blocks (1 MB, (k
−1) AB)

k stego-blocks (1 MB, (k
−1) AB)

(k−1) stego-blocks (1 SB,
(k−2) NB)

k(k+1)/2 stego-blocks
( k(k+1)/2 SB)

2 1 MB, 1 AB 1 MB, 1 AB 1 MB, 1 AB 1 SB, 0 NB 3 SB
3 1 MB, 2 AB 1 MB, 2 AB 1 MB, 2 AB 1 SB, 1 NB 6 SB
4 1 MB, 3 AB 1 MB, 3 AB 1 MB, 3 AB 1 SB, 2 NB 10 SB
5 1 MB, 4 AB 1 MB, 4 AB 1 MB, 4 AB 1 SB, 3 NB 15 SB
6 1 MB, 5 AB 1 MB, 5 AB 1 MB, 5 AB 1 SB, 4 NB 21 SB
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