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ABSTRACT
Symmetric polynomial-based key distribution scheme has been widely adopted in various communication applications.
This type of key distribution consists of a server and a set of users, where the server is responsible to distribute shares
for each user via a symmetric polynomial. Based on the property of symmetry of this polynomial, each pair of users can
compute a common secret key using their shares for establishing a secure communication channel. However, some users
may receive faulty shares from the server because of some uncertain factors in the communication environment, such as
software failures and transmission errors. As a result, the users who receive faulty shares cannot share common secret keys
with other users. To solve this problem, in this paper, we propose two individual verifiable key distribution schemes on the
basis of a symmetric polynomial based key distribution. In both our proposed schemes, the server adopts the same approach
to distribute shares for users; the users are able to verify the validity of their shares without revealing them before establishing
communication channels. If all shares are verified valid, users can ensure that each pair of them possesses a common secret key,
they can establish secure communication channels when needed; otherwise, all users can collaborate to identify those users who
possess faulty shares and require the server to distribute a set of valid shares for those users. Furthermore, both our proposed
schemes are efficient, because the procedures of verification and identification do not involve any complicated cryptographic
operation. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a communication system, if two users wish to communicate
with symmetric encryption, they must possess a common
secret key. A key distribution scheme is a mechanism to
distribute initial private pieces of information (which we
call shares) among all users, such that each pair of users can
compute a common secret key for secure communication.
This share is generated and distributed by a server that is
active only at the distribution phase (such as a set-up
phase of public key systems [1]). Let n denote the number
of users in a communication system, a basic and straight-
forward secure key distribution scheme is that a server

generates n n�1ð Þ
2 keys, and distributes n� 1 keys for each

user, one for each possible communication. The disadvantage
of this approach is that when n is large, it becomes problematic
or even impossible to manage all keys. This is known as
the n2 problem.

In 1992, Blundo et al. [2] first proposed to adopt a
symmetric polynomial in a key distribution scheme
Copyright © 2012 John Wiley & Sons, Ltd.
(this approach was initiated in [3]). In their approach
[2], the server is responsible to pick a secret symmetric
bivariate polynomial F(x,y) with both variables x and y of
degree k, then generates and sends a univariate polynomial
with degree k from F(x,y) as a share for each user. Each pair
of users can compute a common secret key using
their shares. Compared with the key distribution scheme
(i.e., each user needs to store n� 1 keys) introduced previ-
ously, the scheme in [2] can significantly reduce the size
of stored information for each user, and the keys are
still secure only with respect to an adversary controlling
coalitions of a limited size. Since then, the symmetric
polynomial-based key distribution has been widely adopted
in various communication applications. For instance, in the
sensor networks, many key distribution techniques are
infeasible because of the resource constraints on sensors.
As an alternative, symmetric polynomial-based key distribu-
tion requires lower storage for each user, and this type of key
distribution scheme has been widely adopted in sensor
networks [4–8].
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In this paper, we address a realistic problem in a symmetric
polynomial-based key distribution scheme, where some
users may receive faulty shares from the server because
of some uncertain factors, such as software failures and
transmission errors. In this case, these users cannot
compute common secret keys using their faulty shares
with the others to establish secure communication
channels. On the basis of the presentation of faulty shares,
this problem can be divided into two cases: Case 1, some
faulty shares are not k degree polynomials; Case 2, all the
faulty shares are also k degree polynomials, but they are
not generated from a symmetric polynomial. As described
previously, the share in a symmetric polynomial-based key
distribution scheme [2] should be a univariate polynomial
of degree k; as a result, Case 1 can be easily detected, but
in Case 2, users are unable to detect the faulty shares directly.
Therefore, in this work, we only consider the problem of
faulty shares under the Case 2.

In this paper, we propose two individual verifiable key
distribution schemes to solve the problem described previ-
ously. Both our schemes are on the basis of symmetric
polynomial-based key distribution [2], and after receiving
shares from server, all users in our schemes are able to
verify the validity of their shares without revealing them.
In other words, all users in our proposed schemes are
capable of detecting whether faulty shares exist among
users before establishing communications channels. When
faulty shares exist, all users can also collaborate to identify
those users who receive faulty shares from server and
require the server to distribute a set of valid shares to them.
Both our proposed verifiable key distribution schemes are
very efficient because the procedures of verification and
identification do not involve any complicated cryptographic
operation. Furthermore, the proposed schemes are uncondi-
tionally secure only with respect to an adversary controlling
coalitions of a limited size. We will discuss the security in
Section 4 in detail.

The rest of this paper is organized as follows. In the
next section, we introduce the symmetric polynomial-
based key distribution in [2]. In Section 3, we describe the
problem in symmetric polynomial-based key distribution
that we considered in this paper and illustrate the approach
to solving this problem. In Section 4, we propose two
individual verifiable key distribution schemes and discuss
some properties of our proposed schemes. We conclude in
Section 5.
Figure 1. Symmetric polynomial-based key distribution.
2. SYMMETRIC POLYNOMIAL
BASED KEY DISTRIBUTION

In this section, we introduce the model of symmetric
polynomial-based key distribution [2]. Let S denote the
server and Ui, i= 1, 2, . . ., n denote the n users included in
the communication system. The key distribution scheme [2]
can be described as follows.

For each pair of users, (Ui,Uj), Ui can compute a secret
key F(i,j) by F(i,j) = fi(j); Uj can compute a secret key F(j,i)
2

by F(j,i) = fj(i). Because F(x,y) has the property of symmetry,
F(i,j) =F(j,i). Therefore, each pair of users possesses a
common secret key, F(i,j). In addition, the share of each user
is a univariate polynomial fi(y) with degree k, the user needs
to store k+1 elements in the field of GF(p). In general
setting, the parameter k is much smaller than n. This is why
the scheme [2] can significantly reduce the size of stored
information for each user. In [2], it also proved that the secret
keys are unconditionally secure when the colluded users are
no more than k. In other words, any k or less than k users are
unable to obtain the secret keys that they should not possess.
3. PROBLEM DESCRIPTION AND
SOLUTION

In this section, we give a description of our proposed prob-
lem in the symmetric polynomial-based key distribution
scheme and illustrate our approach to solving this problem.

3.1. Problem description

As shown in Figure 1, the share of each user is generated
from a symmetric polynomial, and each pair of users can
compute a common secret key using their shares. The
problem we considered is that, because of some uncertain
factors such as software failures and transmission errors,
some users may receive faulty shares from the server. In
this case, during the common secret key phase, users who
receive faulty shares cannot compute common secret keys
with other users to establish secure communication
channels. For instance, let F(x,y) be the symmetric polyno-
mial selected by server. Suppose the user Ui receives the
valid share, fi(y) =F(i,y), but another userUj receives a faulty
share f

0
j yð Þ 6¼ F j; yð Þ ( f

0
j yð Þ is a kth degree polynomial).

Therefore, the user Uj does not possess the common secret
key F(i,j) with Ui; because f

0
j ið Þ 6¼ fi jð Þ ¼ F i; jð Þ, they are

not able to establish a secure communication channel.

3.2. Solution

First, we introduce a property of “verifiable.” The property
of “verifiable” was proposed in [9]. In that scheme [9], a
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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dealer adopts Shamir’s approach [10] to distribute shares to
shareholders, and these shareholders are capable of verifying
the validity of their shares without revealing them. If the
verification is successful, shareholders ensure that all the
shares are valid; otherwise the dealer needs to distribute
shares once again. In this paper, adopting the same concept
“verifiable” in [9], we propose two individual verifiable
key distribution schemes on the basis of the original key
distribution scheme (shown in Figure 1). Both our proposed
schemes enable users to verify the validity of their shares.
(i.e., all shares are generated from a symmetric polynomial).
In other words, in our proposed schemes, all users can detect
whether there exist faulty shares among users. If all shares
are verified valid, then any pair of users ensure that they
possess a common secret key via their shares, they can
establish a secure communication channel using this key;
else we adopt the approach in [11], which enables users to
identify those users who receive faulty shares from the server
and require the server to distribute a set of valid shares to them.
Figure 2. Our proposed Scheme 1.
4. PROPOSED VERIFIABLE KEY
DISTRIBUTION SCHEMES

In this section, we propose two verifiable key distribution
schemes respectively (Schemes 1 and 2). The properties
of verifiability, identifiability and security of our proposed
schemes are also analyzed in detail.

4.1. Scheme 1

In this subsection, we describe Scheme 1 as shown in
Figure 2. In this scheme, the distribution phase is the same
as that in the original key distribution scheme, although
users are capable of verifying their shares and identifying
faulty shares without any additional information.

In Scheme 1, the verification is based on the property of
symmetry of the polynomial F(x,y), and the identification
of faulty shares is based on “majority voting,” which is
inspired by Harn-Lin’s scheme [11].

The following theorems are used to prove the properties
of Scheme 1. In Theorem 1, we will show that in the
verification phase of Scheme 1, users are capable of verifying
the validity of their shares successfully. In Theorem 2, we
illustrate that when there are at least k+2 valid shares among
users, then all users can collaborate to identify those users
who receive faulty shares. In Theorem 3, we prove that
the secret keys in Scheme 1 are unconditionally secure
only with respect to an adversary controlling coalitions
of a limited size.

Theorem 1. In verification phase of Scheme 1, all users
are able to verify the validity of their shares successfully.

Proof. In Scheme 1, suppose all the shares fi(y), i=1, 2, . . .,n
are generated from a bivariate polynomial F(x,y), which is
indeed unknown to each user, the objective of verification
phase is to ensure that F(x,y) is a symmetric polynomial with
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
both variables of degree k. Because fi(y) =F(i,y), we have fi
(c) =F(i,c), i=1, 2, . . .,n. Therefore, it is easy to know that
the interpolated polynomial hc(x) on the n points (i, fi(c)), i=1,
2, . . .,n satisfies that hc(x) =F(x,c); by the same way, we have
hd(x) =F(x,d). It is easy to observe that if hc(x) and hd(x) are of
degree k, then the variable x in F(x,y) is also k. In addition, the
share of each shareholder is fi(y) =F(i,y), where the variable y
is of degree k; therefore, shareholders can ensure that both
variables in F(x,y) are of degree k. For the property of
symmetry, in step 4 of the verification phase, we can
deduce the equation F(d,c) =F(c,d) from the presentation
hc(d) = hd(c). Because the values c and d are randomly
picked by users, the probability of F(d,c) =F(c,d) when
F(x,y) is an asymmetric polynomial is only 1

p ; when the

prime number p is large enough for cryptographic applica-
tions, this probability can be just ignored. Therefore, we
can conclude that F(x,y) is a symmetric polynomial when
hc(d) = hd(c). In this case, all the shares are valid, and each
pair of users possesses a common secret key using their
shares. In addition, if some users receive faulty shares
because of uncertain reasons, then the interpolated poly-
nomial hc(x) and hd(x), those n points would be of
degree more than k with probability almost 1. This fact
can be detected in our verification phase. In sum, our
Scheme 1 can verify the validity of shares successfully.
3
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Remark. In the verification phase, there exists a special
case that both hc(x) and hd(x) are of degree k, but hc(d) 6¼
hd(c). This means that all shares are generated from an
asymmetric polynomial F0(x,y) with both variables of
degree k. When the faulty shares are caused by some
uncertain factors, this case cannot happen. The only reason
for this case is that a malicious server chose F0(x,y) on
purpose. In our works, the server is always assumed
honest; thus, this case is not under our consideration.

Theorem 2. In identification phase of Scheme 1, when
there are at least kþ 2 valid shares, all users are able to
identify those users who receive faulty shares.

Proof. Let F(x,y) be the kth degree symmetric polynomial
selected by the server and f1(y), f2(y), . . ., fn(y) be a set of
valid shares. It is easy to understand that the interpolated
polynomial hc(x) on the n points (1, f1(c)), (2, f2(c)),
, (n, fn(c)) equals to F(x,c) and is of degree k. If there
exist faulty shares, this interpolated polynomial would
be of degree more than k. However, each set of those
k + 1 points can still deduce a kth degree interpolated
polynomial and when all these k+1 corresponding shares
are valid, this interpolated polynomial just equals to F(x,c).
Let hc;l xð Þ; l ¼ 1; 2; . . . ;Ckþ1

n be all the interpolated polyno-
mials that generated from each combination of k+1 of those
points. The key of our identification is to figure out the legal
polynomial F(x,c) among those Ckþ1

n interpolated polyno-
mials. Considering the case that there are at least k+2 valid
shares, then there would be at least Ckþ1

kþ2 ¼ k þ 2 identical

interpolated polynomial F(x,c) in the pool of hc;l xð Þ; l ¼
1; 2; . . . ;Ckþ1

n . On the other hand, any combination of k+1
points that contains at least one faulty point would generate
a random interpolated polynomial. Therefore, F(x,c)
becomes the majority polynomial and is regarded as the legal
polynomial F(x,c). Then the users who receive faulty shares
can be identified successfully according to our algo-
rithm. As a result, when there are at least k + 2 valid
shares, those users who receive faulty shares can be
identified successfully.

As shown in Theorem 2, the precondition of successful
identification is that there are at least k+ 2 valid shares.
Although we address the problem that users may receive
faulty shares because of some uncertain factors, receiving a
faulty share is still a small probability event. The assumption
that there exist at least k+2 valid shares is reasonable. In
addition, the approach of “majority voting” in our identifica-
tion was first adopted in a cheating identification scheme [11]
where its practical applicability has been proved. Later, [12]
showed that the scheme [11] can be broken by a flexible
attack. The basic assumption in [12] is that the attackers
are malicious and they collude together to cheating.
However, in our assumption, the users in the identification
phase are honest and they collaborate to identify faulty
shares. Therefore, the identification is effective in our
Scheme 1.
4

Theorem 3. In Scheme 1, the keys are unconditionally
secure when there are no more than k� 2 colluded
users.

Proof. In [2], it is proved that all keys in the original key
distribution scheme are unconditionally secure when the
colluded users controlled by an adversary are no more than
k. This is because in the original key distribution scheme,
the symmetric polynomial F(x,y) picked by server has
degree k on both variables x and y, the number of coefficients
in F(x,y) is (k+1)2, and on the basis of the property of
linearity, any (k+1)2 linear independent points on F(x,y)
are capable of reconstructing F(x,y). Because each user Ui, i
[1,n] has a share fi(y) =F(i,y), he or she possesses k+1 linear
independent points on F(x,y), i.e., fi(1) =F(i,1), fi(2) =F(i,2),
, fi(k+1)=F(i, k+1). Any k+1 users can gather (k+1)2

linear independent points on F(x,y) to recover it, then
they can obtain the secret keys they should not know through
F(x,y). On the other hand, any k or less than k users can
obtain at most k(k+1) linear independent points on F(x,y),
they are unable to recoverF(x,y). For our proposed Scheme 1,
all users can obtain hc(x) =F(x,c) and hd(x) =F(x,d) in the
verification phase; therefore, there are already 2(k+1)
public linear independent points on F(x,y) (i.e., hc(1) =F(1,
c),hc(2) =F(2,c), . . ., hc(k+1)=F(k+1, c); hd(1) =F(1,d),hd
(2) =F(2,d), . . ., hd(k+1)=F(k+1,d)). In this case, k� 1
users are enough to obtain (k+1)2 linear independent points
on F(x,y) to recover it, but k� 2 or less users are still
unable to recover F(x,y) to obtain the secret keys they
should not know. Therefore, in Scheme 1, the secret keys
are unconditionally secure when there are no more than
k� 2 colluded users.

Remark. In Theorem 3, it is assumed that there are some
vicious users who want to collaborate to obtain secret keys
they should not know. We want to emphasize that these
vicious users and the users in our scheme are in the different
models. In our model, all users are honest and they will act
honestly throughout the scheme. Furthermore, even though
we assume that the users in our model can be dishonest,
they will still act honestly during the verification phase
and identification phase of Scheme 1. Because the
objective of the two phases is to detect and identify
faulty shares, no information about the secret keys is
revealed. If any user acts dishonestly in the verification
phase, it only causes the key distribution to be halted,
and no pair of users would establish communication
channels using unverified keys, which does not benefit
vicious users at all.

In Scheme 1, we can observe that the users do not need
additional information from server to achieving verification
or identification. However, as analyzed in Theorem 3, the
minor drawback of Scheme 1 is that the security level is
descended a little from the original key distribution scheme,
i.e., our Scheme 1 can resist the attack of up to k� 2 vicious
users, whereas the original one could resist such attack of k
vicious users.
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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4.2. Scheme 2

In this subsection, we propose another verifiable key distri-
bution scheme (Scheme 2) that also enables users to verify
the validity of their shares and identify faulty shares.
Scheme 2 (as shown in Figure 3) has the same security
level as the original key distribution scheme, and as a trade-
off, each user in Scheme 2 needs to store more information
than Scheme 1. Scheme 2 is outlined as follows.

In the Theorem 4, we show that Scheme 2 enables users
to verify the validity of their shares. The identification
phase in Scheme 2 is same as the identification in
Scheme 1. We do not discuss the property of identification
repeatedly. In Theorem 5, we illustrate that Scheme 2 has
the same security level as the original key distribution
scheme. First, we introduce an auxiliary lemma for
Theorem 4.

Lemma 1. Given two random values a1, a22GF(p), if
the combination a1F(x,y)þ a2G(x,y) (both F(x,y) and G(x,y)
are generated from GF(p) and have degree k with both
variables) is a symmetric polynomial, then both of the
polynomials F(x,y) and G(x,y) are symmetric polynomials.

Proof. We can observe that when both F(x,y) and G(x,y) are
symmetric, then a1F(x,y) + a2G(x,y) is symmetric. On the
Figure 3. Our proposed Scheme 2.
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other hand, when at least one of F(x,y) and G(x,y) is asym-
metric, supposing that fi,j and gi,j (0≤ i, j≤ k) are coefficients
of xiyj in F(x,y) and G(x,y), therefore a1F(x,y) + a2G(x,y) is
symmetric means that the values a1, a2 have to satisfy a1fi,jþ
a2gi,j= a1fj,i+ a2gj,i, 0≤ i, j≤ k. Because the two values a1, a2
are randomly selected, it is easy to understand that the
probability of the aforementioned equations is much less
than1

p; when p is large enough for cryptographic applications,

this probability can be ignored. Therefore, when at least one
of F(x,y) and G(x,y) is asymmetric, the random linear
combination of a1F(x,y)þ a2G(x,y) cannot be symmetric.
In sum, we can conclude that when the linear combination
a1F(x,y) + a2G(x,y) is a symmetric polynomial, then both of
F(x,y) and G(x,y) are symmetric.
Theorem 4. In Scheme 2, users are able to verify the
validity of their shares.
Proof. Suppose the shares fi(y), i= 1, 2, . . ., n are generated
from a bivariate polynomial F(x,y). Indeed same as
Theorem 1, we will prove that users in Scheme 2 can check
whether F(x,y) is a symmetric polynomial. In the verification
phase of Scheme 2, the two weights, w1 and w2, and two
values, c and d, are randomly selected by all users. Because
Ci=w1fi(c) +w2gi(c) =w1F(i,c) +w2G(i,c), i=1, 2, . . ., n and
rc(x) is the interpolated polynomial on the points, (i,Ci),
i=1, 2, . . .,n, it is easy to observe that, rc(x) =w1F(x,c) +w2G
(x,c), by the same way, rd(x) =w1F(x,d) +w2G(x,d). Let Q
(x,y) =w1F(x,y) +w2G(x,y), then rc(x) =Q(x,c), rd(x) =Q
(x,d). If rc(d) = rd(c), it means that Q(c,d) =Q(d,c).
Because the values c and d are randomly selected, it can
conclude that Q(x,y) is a symmetric polynomial (same
analysis as illustrated in Theorem 1). In addition, Q(x,
y) =w1F(x,y) +w2G(x,y) is a random linear combination
of F(x,y) and G(x,y) (i.e., the weights w1 and w2 are
randomly selected); according to Lemma 1, F(x,y) is
asymmetric polynomial, all the shares are valid. On the
other hand, if rc(d) 6¼ rd(c), users can obtain that F(x,y) is
asymmetric, there exist faulty shares among users. Therefore,
in Scheme 2, the users are capable of judging the validity of
their shares.
Theorem 5. In Scheme 2, the secret keys are unconditionally
secure when there are no more than k colluded users.
Proof. In the verification phase of Scheme 2, the public
information released by users are rc(x) =w1F(x,c) +w2G(x,c)
and rd(x) =w1F(x,d) +w2G(x,d). In contrast with Scheme 1,
users cannot obtain any information about F(x,c) and F(x,d)
from rc(x) and rd(x); as a result, the users cannot obtain any
point on F(x,y) from the public information released from
the verification phase. Therefore, only k+1 or more than
k+1 users can recover the polynomial F(x,y) using their
shares fi(y) =F(i,y); any k or less users are not enough to
recover F(x,y) to obtain the secret keys they should not know
5
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(as analyzed in Theorem 2). In sum, in Scheme 2, the secret
keys are unconditionally secure when the colluded users are
up to k. In other words, Scheme 2 has the same security level
with the original key distribution scheme. Notice, when the
users need to identify faulty shares in Scheme 2, each user
releases a value of fi(e). In this case, as illustrated in Theorem
3, Scheme 2 is unconditionally secure when there are no more
than k� 1 colluded users.

Notice that using a hash function is also an efficient
way to achieve share verification and identification.
However, we do not adopt hash function in our paper,
the reason is as follows. Considering the case that adopt-
ing a one-way hash function for verification, the server
needs to publish the hash values of all shares, and the
verification and identification is based on the commit-
ments of these hash values. As illustrated in [13], such
schemes are secure only when the computational power
of adversary is bounded by a security parameter; otherwise
the adversary could derive the share from its hash value.
On the contrary, our schemes do not base on any security
assumptions, and they are unconditionally secure to
the adversaries.

In our proposed verifiable key distribution schemes,
users and the server have to compute some additional
operations. However, this is unavoidable. In some similar
works [14–16] that also achieve share verification, the
server (shareholder) and the users (shareholders) also have
to compute additional operations. In our schemes, such
additional operations are just computing interpolated
polynomials. Compared with the exponentiation operations
in 1024-bit number field for discrete logarithm used in
[15], the calculated amount of computing interpolated
polynomials can be negligible. In addition to achieving
verification, the users in our scheme only need to
publish their necessary information for one time.
Compared with those schemes [14,16] that involve
several communication rounds between pairs of users,
the communication traffic in our schemes is very small.
Therefore, the additional operations in our schemes are
acceptable.

There are several differences between Schemes 1 and 2.
For instance, Scheme 1 can resist attack of up to k� 2
colluded users, whereas Scheme 2 can resist k colluded
users or k� 1 colluded users when identification is needed.
For the space overhead, users in Scheme 1 do not need to
store any additional information to achieve verification
and identification, whereas in Scheme 2, users need to
store two shares, where each of them has the same size
as the original share in Scheme 1. The time overhead
during verifications and identifications is almost the
same, as shown in the schemes, which mainly involve
computing several Lagrange interpolating polynomials.
On the basis of the different properties, Schemes 1 and
2 can be used in distinct applications. Scheme 1 is fit
for some communication systems where the storage of
each user is limited, whereas Scheme 2 can be adopted
in communication systems of small scale where the
security is required precisely.
6

5. CONCLUSION

In this paper, we consider a practical problem in a symmetric
polynomial-based key distribution scheme such that some
users may receive faulty shares from the server because of
some uncertain factors such as software failures and
transmission errors. As a result, these users who receive
faulty shares cannot compute common secret key with other
users to establish secure communication channels. In order to
solve this problem, we propose two individual verifiable key
distribution schemes that enable users to verify the validity of
their shares and identify the faulty shares after receiving them
from the server. Both our proposed schemes are efficient and
unconditionally secure with respect to an adversary control-
ling coalitions of a limited size.
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