
Brief Contributions________________________________________________________________________________

Group Authentication

Lein Harn

Abstract—A new type of authentication, call group authentication, which

authenticates all users belonging to the same group is proposed in this paper. The

group authentication is specially designed for group-oriented applications. The

group authentication is no longer a one-to-one type of authentication as most

conventional user authentication schemes which have one prover and one verifier;

but, it is a many-to-many type of authentication which has multiple provers and

multiple verifiers. We propose a basic t-secure m-user n-group authentication

scheme ((t;m; n) GAS), where t is the threshold of the proposed scheme, m is the

number of users participated in the group authentication, and n is the number of

members of the group, which is based on Shamir’s (t; n) secret sharing (SS)

scheme. The basic scheme can only work properly in synchronous

communications. We also propose asynchronous (t;m; n) GASs, one is a GAS

with one-time authentication and the other is a GAS with multiple authentications.

The (t;m; n) GAS is very efficient since it is sufficient to authenticate all users at

once if all users are group members; however, if there are nonmembers, it can be

used as a preprocess before applying conventional user authentication to identify

nonmembers.

Index Terms—Authentication, group communication, secret sharing, ad hoc

network, group-oriented applications
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1 INTRODUCTION

USER authentication is one of the most important security services
in computer and communication application. Knowledge-based
authentication (e.g., password) [9], [17] and key-based authentica-
tion (e.g., public/private key) [6], [13] are the two most popular
approaches. Knowledge-based authentication has some security
flaws. Most users like to use simple and short passwords. Internet
hackers can easily crack simple passwords. To circumvent these
issues, public-key cryptography has been utilized to provide user
authentication [7], [11]. Public-key-based authentication needs a
certificate authority (CA) to provide the authenticity of public
keys. In addition, public-key computations involve large integers.
Computational overhead is one of the main concerns for public-
key based authentication.

All user authentication schemes [5], [10] are one-to-one type of
authentications in which the prover interacts with the verifier to
verify the identity of the prover. For example, the RSA digital
signature [14] can be used to authenticate the signer of the
signature. In this approach, the verifier sends a random challenge
to the prover. Then, the prover digitally signs the random
challenge and returns the digital signature of the challenge to the
verifier. After successfully verifying the digital signature, the
verifier is convinced that the prover is the one with the identity of
the public-key digital certificate used to verify the digital signature.

Network applications are no longer just one-to-one communica-
tion, but involve multiple users (>2). Group communication [1],
[15] implies a many-to-many communication and it goes beyond

both one-to-one communication (i.e., unicast) and one-to-many
communication (i.e., multicast). In a group-oriented application,
there are multiple members who want to form a private network
and to exchange messages among themselves. In order to establish
such a network, every user participated in the application needs to
authenticate other users belonging to the same group. There are two
popular models to provide group authentication services in such
application. The first model involves a centralized authentication
server (AS) [2], [12] and the second model has no AS [3], [4]. In the
first model, AS manages the access rights of the network. For
example, Bhakti et al. [2] proposed to adopt extensible authentica-
tion protocol (EAP) in the IEEE 802.1x Standard [6] for wireless ad
hoc network. This approach requires setting up the AS and mobile
users have to access the AS for the authentication service. However,
for some applications, mobile users have no access to the AS. For
example, in a wireless ad hoc network, each user needs to take in
charge to authenticate other users. If there are n users participated
in such application, each user can use the conventional authentica-
tion scheme for n� 1 times to authenticate other users. The
complexity of this approach is OðnÞ. This complexity may become
the bottleneck of a group-oriented application.

In this paper, we propose a new type of authentication, called
group authentication, which authenticates all users at once. The
group authentication is specially designed to support group-
oriented applications. In the group authentication, the group
manager (GM) is responsible to register all group members
initially. During registration, the GM uses Shamir’s secret sharing
(SS) scheme [16] to issue a private token to each group member.
Later, all users participated in the group authentication work
together without the assistance of the GM to authenticate each
other. We propose a noninteractive basic t-secure m-user n-group
authentication scheme ((t;m; n) GAS), where t is the threshold of
the proposed scheme, m is the number of users participated in a
group-oriented application, and n is the total number of group
members. This basic scheme only works for synchronous commu-
nications. Then, we propose an asynchronous (t;m; n) GAS. The
proposed (t;m; n) GAS can determine whether all users partici-
pated in a group communication belong to the same group. The
complexity of a (t;m; n) GAS is Oð1Þ which is more efficient than
the complexity using a conventional user authentication scheme to
authenticate multiple users. The proposed (t;m; n) GAS is
sufficient if all users are group members; however, if there are
nonmembers, it can be used as a preprocess before applying
conventional user authentication to identify nonmembers.

The rest of this paper is organized as follows: in Section 2, we
review of Shamir’s (t; n) SS scheme. In Section 3, we introduce the
model of our proposed group authentication including adversaries
and security requirements. We present a noninteractive basic
(t;m; n) GAS in Section 4. Then, we propose an asynchronous
(t;m; n) GAS in Section 5, and an asynchronous (t;m; n) GAS with
multiple authentications in Section 6. We conclude in Section 7.

2 REVIEW OF SHAMIR’S (t; n) SS SCHEME [16]

In this section, we review Shamir’s (t; n) SS scheme based on a
linear polynomial. There are n shareholders, U ¼ fU1; U2; . . . ; Ung
and a dealer D. The scheme consists of two algorithms as
illustrated in Fig. 1.

Shamir’s (t; n) SS scheme satisfies security requirements of the
SS scheme, that are, 1) with knowledge of any t or more than
t shares can reconstruct the master secret s, and 2) with knowledge
of fewer than t shares cannot get any information about the master
secret s. Shamir’s scheme is unconditionally secure since the
scheme satisfies these two requirements without making any
computational assumption. For more information on this scheme,
readers can refer to the original paper [16].
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3 MODEL OF GROUP AUTHENTICATION

3.1 Group Authentication

We assume that there are m users, Pi, i ¼ 1; 2; . . . ;m, participated
in a group-oriented application. These users want to make sure
whether they all belong to the same group with n group members,
Ui 2 U , i ¼ 1; 2; . . . ; n, at the beginning of the application. The
group authentication can be used to determine whether all users
belong to the same group. The group authentication is no longer a
one-to-one type of authentication as most conventional user
authentication schemes which have one prover and one verifier;
but it is a many-to-many type of authentication which has multiple
provers and multiple verifiers. In fact, each user in the group
authentication acts both roles of the prover and the verifier. There
are only two possible outcomes of the group authentication, that
are, either all users belong to the same group or there are
nonmembers. Thus, the group authentication is sufficient if all
users are group members; however, if there are nonmembers, it
can be used as a preprocess before applying conventional user
authentication to identify nonmembers.

3.2 Adversaries in the Group Authentication

We consider two types of adversaries in the group authentication:
outside attacker and inside attacker. The outside attacker is an
adversary who does not own any valid token generated by GM
during system set up. The outside attacker may try to impersonate
to be a group member participated in the authentication. In our
proposed solution, each user needs to release a value based on his
token obtained from GM initially. Group authentication is based
on all released values from users. Since values are released
asynchronously, the outside attacker can wait to release a “good”
value last after knowing all released values from others. There is
another type of attackers. The inside attacker is a group member
who owns a valid token obtained from GM. The inside attacker
may try to generate “good” tokens from his own token or to
collude with other group members to recover the secret of GM. In
this paper, we propose group authentication schemes which can
resist up to t� 1 (i.e., t is the threshold) colluded inside adversaries.

3.3 An Informal Model of Proposed Scheme

In a conventional user authentication, the prover Pi wants to prove

to a verifier that he is a particular user with identity, Ui
(i.e., Pi ¼ Ui). In most user authentication schemes, the prover

needs to interact with the verifier in the following way. First, the

verifier sends a random challenge r to the prover. The prover uses

his secret key to compute a response and sends the response to the

verifier. The verifier can authenticate the prover to be a particular

user based on the response. We can use the following notations to

represent the user authentication. The prover Pi uses his secret key

to compute and releases a value ci using his secret key and a

random challenge sent by the verifier as inputs. In the user

authentication, there is an algorithm, UA, which allows the verifier

to verify that the prover is a particular user, i.e.,

UAfci i 2 Pgj ¼ 0! Pi 6¼ Ui;
1! Pi ¼ Ui:

�

In this paper, we propose a new notion, called t-secure m-user

n-group authentication scheme ((t;m; n) GAS.

Definition 1: t-Secure m-User n-Group Authentication Scheme

(ðt;m; nÞ GAS). Let t, m, n, be positive integers with t � m � n. A

t-secure m-user n-group authentication scheme has the following

properties: 1) the scheme can resist up to t� 1 colluded group

members, and 2) for m users, the scheme can determine whether these

users belong to the same group with n members.

In a (t;m; n) GAS, the GM selects the secret s and computes
tokens, si; i;¼ 1; 2; . . . ; n, for the group with n members during
system set up. The GM sends each token si to each group member
Ui 2 U secretly and makes HðsÞ publicly known, where HðsÞ is
the one-way function of the secret. In a (t;m; n) GAS, there are
m users, Pi, i;¼ 1; 2; . . . ;m, and each user uses his token to
compute and release ci. There is an algorithm, GA, which allows
users to verify that all released values are valid, where F is a
public function. That is,

GAfHðsÞ?HðF ðc1; c2; . . . ; cmÞÞg ¼
0! P 6� U;
1! P � U:

�

The (t;m; n) GAS can only detect the existence of nonmembers,

but it cannot identify nonmembers. One unique feature of a

(t;m; n) GAS is that all users are authenticated at once, but only

one prover is authenticated by one verifier in a conventional user

authentication.
The (t;m; n) GAS is described by the following scheme:
Initialization. All system parameters are generated and pub-

lished by the GM in initialization.
Distribution. The GM generates and distributes token si for each

group member Ui, secretly, i;¼ 1; 2; . . . ; n.
Authentication. Each user computes and releases a value, ci,

using his token. After receiving all ci, i ¼ 1; 2; . . . ;m, (i.e.,

t � m � n), users verify whether these values are released by

members of the group. If the verification fails, additional user

authentication is needed to identify nonmembers.

3.4 Security Model of Proposed (t;m; n) Group
Authentication Scheme

We will propose a noninteractive basic (t;m; n) GAS using

Shamir’s (t; n) SS scheme. However, this basic scheme works

properly if all values are released simultaneously. We will modify

the basic scheme to a noninteractive asynchronous (t;m; n) GAS.

Finally, we propose a noninteractive asynchronous (t;m; n) GAS

for multiple authentications with the following properties:
Correctness. The outcome of this scheme is positive if all users

are group members; otherwise, there are nonmembers.
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Fig. 1. Shamir’s ðt; nÞ SS scheme.



Efficiency. If the outcome of the proposed scheme is negative,

the proposed (t;m; n) GAS can be used as a preprocess of
conventional user authentication scheme to identify nonmembers.
Thus, the proposed (t;m; n) GAS must be efficient. In addition, in

one of our proposed schemes, the same tokens generated by the
GM initially can be reused for multiple authentications. This
arrangement can improve the efficiency of token distribution.

Security. The scheme must be able to resist up to t� 1 colluded
inside adversaries. In addition, since values are released asyn-
chronously, any outside adversary cannot impersonate to be a
member by forging a valid value after knowing at most n� 1
values from other members. For group authentication with
multiple authentications, there are multiple secrets to be recovered
sequentially. The scheme must be able to protect uncovered secrets
when some secrets have been recovered.

Flexibility. The scheme should work properly for various size m
(i.e., t � m � n) of users participated in the authentication. In
addition, the scheme must work properly for releasing values

synchronously and asynchronously.

4 BASIC (t;m; n) GROUP AUTHENTICATION SCHEME

In the following discussion, we assume that there are n group
members, Ui 2 U , i ¼ 1; 2; . . . ; n, registered at the GM to form a
group. During registration, GM selects a random (t� 1)th (i.e.,
t � n) degree polynomial fðxÞ with fð0Þ ¼ s, and computes secret
tokens of members as yi ¼ fðxiÞ, i ¼ 1; 2; . . . ; n, where xi is the
public information associated with member Ui. GM sends each
token yi to member Ui secretly. GM makes H(s) publicly known,
where H is a one-way function.

Remark 1. The threshold t is an important security parameter that
affects the security of the group authentication. Using a (t, n) SS
scheme to issue tokens in the registration can prevent up to
t� 1 colluded inside attackers to derive the secret polynomial
fðxÞ selected by the GM and to forge valid tokens. Furthermore,
since (t, n) SS scheme has been used to issue tokens, the GM
only needs to issue new token to any new member who just
joins the group. On the other hand, when any member leaves
the group, it assumes that one token has been compromised.
The GM needs to make this information available to all
remaining members. The GM keeps on counting the number
of leaving members. When this number reaches the threshold, t,
GM needs to issue new tokens to all remaining group members.

From now on, we assume that there are m (i.e., t � m � n)
users, Pi, i ¼ 1; 2; . . . ;m, with their tokens ffðx1Þ; fðx2Þ; . . . ; fðxmÞg
participated in the group authentication. The basic idea of this
scheme is that each user releases the token obtained from the GM
during registration. If all released tokens are valid, the interpola-
tion of the released tokens can reconstruct the polynomial fðxÞ and
obtain the secret s. The published one-way value of the secret,
HðsÞ, is used to compare with the one-way value of the
reconstructed secret. We outline the scheme in Fig. 2.

Theorem 1. Scheme 1 has the properties of the t-secure m-user n-group

authentication scheme as we described in Section 3.4.

Correctness. It is obvious that the secret can be successfully
reconstructed in Scheme 1 if users are all members and act
honestly to release their Lagrange components.

Efficiency. The communication overhead is very limited. Every

participant only needs to release a value to all other participants.
This can be accomplished by sending a broadcast message. Every
participants only needs to compute polynomial operations and,

therefore, can be efficiently implemented on various platforms. In
addition, not like the most conventional user authentication
schemes which authenticate one user each time, this proposed

group authentication scheme authenticates all users at once.

Security. Shamir’s secret reconstruction scheme can be general-

ized to take more than t shares as

s ¼ fð0Þ ¼
Xm
i¼1

fðxiÞ
Ym

r¼1;r 6¼i

�xr
xi�xr

mod p;

when there are m (i.e., t � m � n) shareholders with their shares,

ffðx1Þ; fðx2Þ; . . . ; fðxmÞg, in the secret reconstruction. In Scheme 1,

if every released token fðxiÞ is a valid token obtained from the GM

initially, the one-way value of the recovered secret must satisfy

Hðs0Þ ¼ HðsÞ. However, if there is any nonmember who does not

own a valid token on the polynomial fðxÞ, the reconstructed secret

will be different from the secret s. Furthermore, the nonmember

cannot forge a valid token after knowing other released tokens

since all tokens are released simultaneously.
Flexibility. The authentication scheme works properly for

m users with t � m � n. However, Scheme 1 is secure only when

all tokens are released synchronously.

Remark 2. Scheme 1 cannot prevent outside adversaries to

impersonate to be group members when there are more than

t users and all tokens are released asynchronously. This is

because if there are more than t users, the adversary needs only

t valid tokens to recover the secret polynomial fðxÞ and to forge

a valid token. The adversary can be the last one to release his

token. In the next section, we modify Scheme 1 to propose an

asynchronous (t;m; n) GAS. The modified scheme needs to

prevent the adversary to obtain other members’ tokens from

released values.
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Fig. 2. Basic (t;m; n) group authentication-Scheme 1.



5 ASYNCHRONOUS (t;m; n) GROUP AUTHENTICATION

SCHEME

In this section, we propose a (t;m; n) GAS which allows m (i.e.,

t � m � n) users to release their values asynchronously in the

group authentication. The basic idea is that the GM needs to select

k (i.e., kt > n�1, we will use this condition in Theorem 2) random

polynomials, flðxÞ, l ¼ 1; 2; . . . ; k, having degree t� 1 each, and

generates tokens, flðxiÞ, l ¼ 1; 2; . . . ; k, for each group member Ui.

For any secret, s, GM can always find integers, wj; dj, j ¼ 1; 2; . . . ; k,

in GF ðpÞ, such that s ¼
Pk

j¼1 djfjðwjÞ, where wi 6¼ wj, for every

pair of i and j. GM makes these integers, wj; dj, j ¼ 1; 2; . . . ; k, and

HðsÞ publicly known.
In the group authentication, each user Pi uses his tokens,

flðxiÞ, l ¼ 1; 2; . . . ; k, to compute and release one Lagrange

component, ci ¼
Pk

j¼1 djfjðxiÞ
Qm

r¼1;r 6¼i
wj�xr
xi�xr mod p. Thus, after

knowing ci, i ¼ 1; 2; . . . ;m, each user can recover the secret as

s0 ¼
Pm

i¼1 ci mod p. The authentication is based on the comparison

between the one-way value of the reconstructed secret and the

published one-way value of the secret. However, it is computa-

tionally impossible to derive tokens from ci. We outline this

scheme in Fig. 3.

Theorem 2. Scheme 2 has the properties of the t-secure m-user n-group

authentication scheme as we described in Section 3.4 if kt > n�1.

Correctness. It is obvious that the secret can be successfully
reconstructed in Scheme 2 if users are all members and act
honestly to release their Lagrange components. If there is any
nonmember who does not own any valid token, the non-
member cannot release a valid Lagrange component. Thus, the
recovered secret must be different from the secret s.

Efficiency. The communication overhead is very limited. Every
participant only needs to release a value to all other participants.

The most time-consuming operation for each user is to compute

the Lagrange component as

cr ¼
Xk
l¼1

di;lflðxrÞ
Ym

v¼1;v6¼r

wl�xv
xr�xv

mod p;

in Step 1. This polynomial evaluation becomes the main

computation in our proposed scheme. However, the modulus p

in our polynomial computation is much smaller than the modulus
(e.g., 1,024 bits) used in most public-key cryptosystems, such as

RSA cryptosystem [14]. In addition, not like most conventional

user authentication schemes which authenticate one user each

time, this proposed group authentication scheme authenticates all

users at once. Thus, the proposed scheme is very efficient in

comparing with most user authentication schemes.
Security. Since the tokens are generated by polynomials, flðxÞ,

l ¼ 1; 2; . . . ; k, having degree t�1 each, Scheme 2 can resist up to

t�1 colluded inside adversaries trying to recover the polynomials

selected by the GM initially.
For any outside adversary participated in the group authenti-

cation, the secret tokens, flðxiÞ, l ¼ 1; 2; . . . ; k, are protected

unconditionally in the released Lagrange component ci ¼Pk
j¼1 djfjðxiÞ

Qm
r¼1;r 6¼i

wj�xr
xi�xr mod p. The outside adversary cannot

derive any private token from each released Lagrange component.

On the other hand, each released Lagrange component is a linear

function of kt coefficients of polynomials, flðxÞ, l ¼ 1; 2; . . . ; k, with

each polynomial having degree t�1. In the following discussion,

we consider the scenario that gives the adversary the most

information to recover private tokens. If there are n users
participated in the group authentication, the adversary can obtain

at most n�1 Lagrange components if the adversary is the last one

to release his value. Since kt > n�1, this condition prevents the

outside adversary to solve the secret polynomials, flðxÞ,
l ¼ 1; 2; . . . ; k. Thus, the outside adversary cannot forge any valid

Lagrange component when values are released asynchronously.
Flexibility. The authentication scheme works properly for

m users with t � m � n. In addition, when values are released

asynchronously, the proposed scheme can still detect any outside

adversary even the adversary releases his Lagrange component

last. This is because the proposed scheme requires every user to

contribute a valid Lagrange component. Since the adversary does

not own any token generated by the GM initially, the adversary

cannot contribute a valid Lagrange component.

Remark 3. For any secret, s, the GM needs to select wi 6¼ wj, for

every pair of i and j and the secret is s ¼
Pk

j¼1 djfjðwjÞ. If

w ¼ wi ¼ wj, for every pair of i and j, the outside adversary can

still forge valid tokens. This is because in this case the secret,

s ¼
Pk

j¼1 djfjðwÞ, is a share of the additive sum of polynomials

as
Pk

j¼1 djfjðxÞ having degree t�1. Each Pi needs to use his

tokens to compute and release the Lagrange component,

ci ¼
Pk

j¼1 djfjðxiÞf
Qm

r¼1;r 6¼i
w�xr
xi�xrgmod p. The adversary can re-

cover the additive sum of tokens,
Pk

j¼1 djfjðxiÞ, from each

released Lagrange component ci. Thus, the adversary can

recover the additive sum of polynomials,
Pk

j¼1 djfjðxÞ, and

forge a valid Lagrange component from t additive tokens.

Scheme 2 protects the secrecy of tokens, but, it is a one-time

authentication since the secret is no longer a secret once it has

been recovered. In the next section, we extend the design used

in Scheme 2 to propose an asynchronous (t, m, n) GAS with

multiple authentications. In the proposed scheme, tokens

generated by the GM initially can be reused to recover multiple

secrets. In addition, any recovered secrets will not compromise

the secrecy of uncovered secrets.
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Fig. 3. Asynchronous (t;m; n) group authentication-Scheme 2.



6 ASYNCHRONOUS (t;m; n) GROUP AUTHENTICATION

SCHEME WITH MULTIPLE AUTHENTICATIONS

In this section, we propose an asynchronous (t;m; n) GAS in which
tokens obtained from the GM initially can be reused for multiple
authentications. The basic idea of Scheme 3 is that the GM needs to
select two large public primes, p and q, such that q divides p� 1,
GF ðqÞ is a unique subgroup of GF ðpÞ with order q, and every gi is
a generator of GF ðqÞ. GM select two random polynomials, flðxÞ,
l ¼ 1; 2, having degree t�1 each with coefficients in GF ðqÞ and
generates tokens, flðxiÞ, l ¼ 1; 2, for each group member Ui. There
are multiple secrets selected by the GM. For any secret, si, GM first
selects random integers,wi;j; di;j, j ¼ 1; 2, in GF ðqÞ, where
wi;1 6¼ wi;2, and the secret, si, is determined as

si ¼ g
P2

j¼1
di;jfjðwi;jÞmod q

i mod p:

GM makes these integers,wi;j; di;j, j ¼ 1; 2, and ðgi; HðsiÞÞ
publicly known.

In the group authentication to reconstruct the secret, si, each
user Pr uses his tokens, flðxrÞ, l ¼ 1; 2, to compute one Lagrange
component, cr ¼

P2
l¼1 di;lflðxrÞ

Qm
v¼1;v6¼r

wi;l�xv
xr�xv mod q. Then, Pr com-

putes and releases er ¼ gcii mod p. Thus, after knowing er,
r ¼ 1; 2; . . . ;m, each user can recover the secret as si ¼Qm

r¼1 er mod p. The authentication is based on the comparison
between the one-way value of the reconstructed secret and the
published one-way value of the secret. However, it is computa-
tionally impossible to derive tokens from er. We outline this
scheme in Fig. 4.

Theorem 3. Scheme 3 has the properties of the t-secure m-user n-group

authentication scheme as we described in Section 3.4.

Correctness. If each user Pr is a group member and acts honestly in
the group authentication, then in Step 2, the recovered value is
equivalent to

s0i ¼
Ym
r¼1

ermod p ¼ g
Pm

r¼1
crmod q

i mod

p ¼ g
P2

l¼1
di;lfl ðxr Þ

Qm

v¼1;v 6¼r
wi;l�xv

xr�xvmod q

i mod

p ¼ g
P2

j¼1
di;jfjðwi;jÞmod q

i mod p ¼ si:
ut

Efficiency. The communication overhead is very limited. Every
participant only needs to release a value to all other participants.
The most time-consuming operation for each user is to compute
the modular exponentiation in Step 1. This computation is the
same as most public-key computations, such as RSA cryptosystem
[14]. Not like most conventional user authentication schemes
which authenticate one user each time, this proposed group
authentication scheme authenticates all users at once.

In our proposed scheme, finding each Lagrange component,
cr ¼

Pk
l¼1 di;lflðxrÞ

Qm�
v¼1;v 6¼r

wi;l�xv
xr�xv mod p, from each released value,

er ¼ gcii mod p, needs to solve the discrete logarithm. It is
computationally infeasible to derive any private token from the
released values. Thus, same tokens generated by the GM initially
can be reused for multiple authentications. This arrangement can
improve the efficiency of token distribution.

Security. Since the tokens are generated by a polynomial having
degree t�1, this scheme can resist up to t�1 colluded inside
adversaries trying to recover the polynomial flðxÞ selected by the
GM initially.

For any outside adversary participated in the group authentica-
tion, to derive each Lagrange component, cr, from each released
value, er ¼ gcii mod p, needs to solve the discrete logarithm and it is
computationally infeasible. In other words, private tokens are
protected from the released values. Thus, the outside adversary
cannot forge a valid value since he does not have any valid token.

To derive any exponent,
P2

j¼1 di;jfjðwi;jÞmod q, from each

recovered secret,

si ¼ g
P2

j¼1
di;jfjðwi;jÞmod q

i mod p;

also needs to solve the discrete logarithm and it is computationally

infeasible. In other words, private tokens are protected from any

recovered secret. Since each secret uses random integers, wi;j; di;j,

j ¼ 1; 2, the secrecy of uncovered secrets is protected from the

recovered secrets.
In the following, we explain why the GM needs to select

random integers, wi;j; di;j, j ¼ 1; 2, with the condition wi;1 6¼ wi;2
initially. If w ¼ wi;1 ¼ wi;2, the outside adversary can still forge

valid value after knowing t released values, er. This is because, if

w ¼ wi;1 ¼ wi;2, the exponent of the secret,

si ¼ g
P2

j¼1
di;jfj ðxrÞ

i mod p;
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Fig. 4. Asynchronous (t;m; n) group authentication scheme for multiple

authentications scheme.



is a share of the additive sum of polynomials,
P2

j¼1 di;jfjðxÞ having
degree t�1. The adversary can recover the modular exponentia-
tion of the additive tokens,

P2
j¼1 di;jfjðxrÞ, from each released

value, er, as

hr ¼ g
P2

l¼1
di;l fl

ðxrÞ

r ¼ ðerÞ
�Qm

v¼1;v 6¼r
w�xv
xr�xvmod q

��1

mod p:

After knowing hr, r ¼ 1; 2; . . . ; t, the adversary can forge a valid
value er without being detected.

Flexibility. The authentication scheme works properly for
m users with t � m � n. In addition, when values are released
asynchronously, the proposed scheme can still detect any
outside adversary even the adversary releases his Lagrange
component last.

7 CONCLUSIONS

We propose a special type of authentication, called group
authentication, which is specially designed for group-oriented
applications. The proposed group authentication is no longer a
one-to-one type of authentication and it is a many-to-many type of
authentication. Group authentication can authenticate multiple
users at once. Our proposed (t;m; n) group authentication
schemes, Schemes 1 and 2, are very efficient since the schemes
are based on Shamir’s (t; n) SS scheme and the computations
involve only polynomial operations. Scheme 3 allows tokens
obtained from the GM initially to be reused for multiple
authentications. Group authentication opens a new research
direction for the SS.
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