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ABSTRACT

A group key distribution protocol can enable members of a group to share a secret group key and use it for
secret communications. In 2010, Harn and Lin proposed an authenticated group key distribution protocol
using polynomial-based secret sharing scheme. Recently, Guo and Chang proposed a similar protocol based
on the generalized Chinese remainder theorem. In this paper, we point out that there are some security prob-
lems of Guo and Chang’s protocol and propose a simpler authenticated group key distribution protocol
based on the Chinese remainder theorem. The confidentiality of our proposed protocol is unconditionally
secure. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The group communication has been developed extensively in many applications currently.
Ensuring the security of a group communication has become one of the most important issues in
the development. Generally speaking, the security properties of a group communication include
two basic aspects, that is, (i) the messages transmitted within the group can only be shared by
authorized group members, but not by any unauthorized users; and (ii) the transmitted messages
must be able to be authenticated by members. The security properties mentioned previously imply
that a group session key must be used by authorized group members to encrypt and authenticate
the messages.
Group key management [1] can be used for generating and distributing a group session key.

Group key agreement protocols [2–6] and group key distribution protocols [7–11] are two kinds
of group key management protocols. In key agreement protocols, all authorized group members
work together to generate and distribute a group session key. Thus, there is no need to adopt a
mutually trusted server. On the other hand, in group key distribution protocols, a mutually trusted
server, usually called the key generation center (KGC), is employed to choose a group session
key, and the KGC sends the session key to all authorized group members secretly. In general, group
key distribution protocols are more efficient than key agreement protocols because in group key
distribution protocols, a trusted KGC handles most key distribution tasks. A large amount of
research works on this subject have been published in the literature [3–6].
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In 2010, Harn and Lin [12] proposed an authenticated group key distribution protocol based on
Shamir’s (t, n) secret sharing (SS). In an (t, n) SS [13–16], a dealer divides a secret s into n shares.
The two security requirements of an SS are (i) the secret s can be recovered by any t or more than t
shares, and (ii) the secret s cannot be reconstructed by fewer than t shares. Shamir’s (t, n) SS [13, 14],
which is based on the Lagrange interpolating polynomial, is the most well-known SS scheme, and it
has been studied extensively in the literature [17–20]. Shamir’s (t, n) SS is unconditionally secure,
that is, it can satisfy the two security requirements of an SS described previously without making
any computational assumption. Aside from the polynomial-based SSs, SSs can also be based on
the Chinese remainder theorem (CRT), such as Mignotte’s SS scheme [19] and Asmuth–Bloom’s
SS scheme [20].
Recently, Guo and Chang [21] pointed out that although Harn and Lin’s protocol can withstand

outside and inside attacks, a random challenge, Ri, which is a component of the group key’s
construction, must be transmitted from each authorized group member to the KGC. Guo and Chang
proposed a new authenticated group key distribution protocol based on the concepts of the
generalized Chinese remainder theorem (GCRT) [22, 23]. They claimed that by using the GCRT,
their protocol can avoid sending random challenges.
Although (t, n) SS is an important tool in designing group key distribution protocols, (t, n) SS can

be widely used for applications in other cryptographic topics. Parakh and Kak [24] proposed a space
efficient SS scheme, in which k secrets can be divided into n shares, where k≤ n. Their method can
be used for secure parallel communication and online data storage. Chen and Wu [25] presented an
anonymous multipath routing protocol based on SS in mobile ad hoc networks. The protocol can
provide high security by preventing passive attacks and reduce the successful probability of active
attacks. Guo and Chang [26] proposed an SS scheme for general access structures such that the
shared secret only can be recovered by any qualified subsets of participants. Zhu et al. [27]
presented an N-party cloud storage protocol based on SS, which achieves authentication, confiden-
tiality, and entangled security. In 2012, Harn [28] proposed a novel method of group authentication
to authenticate all users belonging to the same group. The method is based on the SS and is a many-
to-many type of authentication, which involves multiple provers and multiple verifiers. Unlike
Harn’s paper that is focused on the authentication issue for group-oriented applications, our paper
will discuss how to securely distribute a group key to members in group communications.
Inspired by Harn and Lin’s protocol [12] and Guo and Chang’s protocol [21], in this paper, we

propose a simple authenticated group key distribution protocol based on the CRT. The contribu-
tions of our protocol are listed as follows:

(1) We point out some security problems of Guo and Chang’s protocol.
(2) Our proposed protocol based on the CRT is much simpler than the other two protocols.
(3) In our proposed protocol, the group key confidentiality is unconditionally secure, whereas the

security of Harn and Lin’s protocol relies on the RSA assumption [12].

The rest of this paper is organized as follows. In Section 2, we provide some preliminaries. Our
proposed protocol is described in Section 3. Section 4 offers analysis of our protocol. Conclusion is
given in Section 5.

2. PRELIMINARIES

In this section, we briefly introduce some fundamentals that are essential in the design of our
protocol. First, we review the CRT and then describe two CRT-based SSs, that is, Mignotte’s
(t, n) SS [19] and Asmuth–Bloom’s (t, n) SS [20]. At last, we review Guo and Chang’s group
key distribution protocol [21] that uses Asmuth–Bloom’s (t, n) SS and the GCRT [22, 23] as
its building blocks.

2.1. Chinese remainder theorem

The CRT [22] can be described as follows. Given t pairwise, co-prime integers, p1, p2, . . ., pt, with
GCD(pi,pj) = 1 for i 6¼ j,the following system of simultaneous congruencies
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X ¼ x1 mod p1ð Þ;
X ¼ x2 mod p2ð Þ;

:
:
:

X ¼ xt mod ptð Þ;

has one unique solution X in ZP, where P ¼ Qt
i¼1pi and ZP stands for integers in the range of [0,P).

From CRT, X can be computed as X ¼ Pt
i¼1

Mi�M0
i�xi mod Pð Þ; where Mi ¼ P

pi
and Mi �M0

i� 1(mod pi).

2.2. Mignotte’s (t, n) SS

Mignotte’s (t, n) SS [19] was introduced in 1983, which is based on the CRT. It consists of two
phases, that is, share generation and secret reconstruction.

Share generation
A set of n positive integers, {p1< p2< . . .< pn}, is selected satisfying the following conditions:

(1) GCD(pi,pj) = 1 for i 6¼ j,
(2) pn� t + 2 � pn� t + 3 � . . .� pn< p1 � p2 � . . .� pt,

where pi is the public information assigned to shareholder, ui. Now let us define the t-threshold
range. The t-threshold range is denoted as Zpn�tþ2�pn�tþ3�...�pn;p1�p2�...�pt ; which represents integers in
the range of (pn� t + 2 � pn� t+ 3 � . . .� pn< p1 � p2 � . . .� pt).
The dealer selects the secret s in the t-threshold range, Zpn�tþ2�pn�tþ3�...�pn;p1�p2�...�pt : Then, the share si of
shareholder, ui, is computed as si= s(mod pi), i = 1, 2, . . ., n. Each share, si, is sent to shareholder, ui,
in a secure channel.

Secret reconstruction
Given any t distinct shares, for example, slj2 {s1, s2, . . ., sn} for j = 1, 2, . . ., t, the secret s can be
recovered by constructing the following system of simultaneous congruencies:

s ¼ sl1 mod p1ð Þ;
s ¼ sl2 mod p2ð Þ;

:
:
:

s ¼ slt mod ptð Þ:

According to the CRT, the unique solution s in Zpn�tþ2�pn�tþ3�...�pn;p1�p2�...�pt can be computed as

s ¼ Pt
j¼1

Mj�M 0
j�slj mod Pð Þ; where P ¼ Qt

j¼1pj; Mj ¼ P
pj

and Mj �M0
j� 1(mod pj).

There is one important reason why the secret s must be selected in the t-threshold range,
Zpn�tþ2�pn�tþ3�...�pn;p1�p2�...�pt . This can ensure that Mignotte’s (t, n) SS satisfies two security requirements
of an SS. That are (i) the secret s can be recovered successfully by any t or more than t shares, and
(ii) the secret cannot be recovered by fewer than t shares. The lower bound, pn� t+2 � pn� t+3 � . . . � pn,
of the t-threshold range, is the largest product of any t� 1 moduli, and the upper bound, p1 � p2 � . . . �pt,
is the smallest product of any tmoduli of the set of n positive integers, {p1, p2, . . .,pn}. If the secret s is
chosen in the t-threshold range, the product of any t moduli associated with t shares is surely larger
than or equal to the upper bound, p1 � p2 � . . . � pt, which guarantees that the secret s can be recovered
by any t or more than t shares, and the product of any t�1 moduli associated with t�1 shares is
smaller than or equal to the lower bound, pn� t + 2 � pn� t + 3 � . . . � pn, which ensures that the secret
s cannot be reconstructed by fewer than t shares. However, the weakness of Mignotte’s (t, n) SS
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is that some information of the secret s can be revealed with knowing fewer than t shares, which
implies that it is not a perfect SS.

2.3. Asmuth–Bloom’s (t, n) SS

In 1983, Asmuth and Bloom presented an (t, n) SS based on the CRT [20]. It consists of two phases
as follows:

Share generation
A set of positive integers, {q, p1< p2< . . .< pn}, is selected satisfying the following conditions:

(1) GCD(pi,pj) = 1 for i 6¼ j,
(2) GCD(q,pi) = 1 for all i,
(3) q � pn� t + 2 � pn� t+ 3 � . . .� pn< p1 � p2 � . . .� pt,

where pi is the public information assigned to shareholder, ui. The dealer selects the secret s in Zq.
Then, the dealer computes an integer X= s+ dq, in the t-threshold range, Zpn�tþ2�pn�tþ3�...�pn;p1�p2�...�pt ;
where d is an integer. The share si of shareholder, ui, is generated by computing si=X(mod pi),
i= 1, 2, . . ., n. Each share, si, is sent to shareholder, ui, in a secure channel.

Secret reconstruction
Given any t distinct shares, for example, slj2 {s1, s2, . . ., sn} for j = 1, 2, . . ., t, the integer X can be
recovered by constructing the following system of simultaneous congruencies:

X ¼ sl1 mod p1ð Þ;
X ¼ sl2 mod p2ð Þ;

:
:
:

X ¼ slt mod ptð Þ:

From CRT, the unique solution X in Zpn�tþ2�pn�tþ3�...�pn;p1�p2�...�pt can be computed as X ¼ Pt
j¼1

Mj�M0
j�

slj mod Pð Þ;whereP ¼ Qt
j¼1pj;Mj ¼ P

pj
and Mj �M0

j� 1(mod pj). Once X is determined, the secret s

can be recovered by computing s=X(mod q).

In Asmuth–Bloom’s (t, n) SS, both security requirements of an SS can be satisfied by choosing
the integer X in the t-threshold range, Zpn�tþ2�pn�tþ3�...�pn;p1�p2�...�pt :Additionally, Asmuth–Bloom’s (t, n)
SS is a perfect SS because no information of the secret can be disclosed with knowing fewer than t
shares. Interest reader can refer to the original paper [20] for detailed discussion.

2.4. Guo and Chang’s group key distribution protocol

In this subsection, we review Guo and Chang’s authenticated group key distribution protocol [21],
which is based on the GCRT.
Guo and Chang’s protocol consists of three phases, that is, the initialization phase, registration

phase, and group key distribution phase. Suppose that t group members want to hold a conference.
In the initialization phase, the KGC generates an Asmuth–Bloom sequence, {q, p1< p2< . . .< pt}.
In the registration phase, the KGC randomly selects a group session key K in Zq and then generates an
integer X=K+ dq, where d is an integer and X is in Zp1�p2�...�pt :After that, shares, xi, for i = 1, 2, . . ., t,
of X are generated by the GCRT. (xi,pi) is the secret (i.e., also called private share)
between the KGC and each authorized group member ui. In the group key distribution
phase, the KGC extends the Asmuth–Bloom sequence, {q, p1< p2< . . .< pt}, to a longer
sequence, {q, p1< p2< . . .< pt< pt + 1< . . .< p2t� 1} and then uses the new sequence and
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the GCRT to generate (t�1) public shares. Thus, each ui can recover the group key K by
using his/her private share, (xi,pi), and (t�1) public shares.
Unfortunately, Guo and Chang’s protocol has the following security problems. (i) Because the

integer X is in Zp1�p2�...�pt ; not in the t-threshold range, Zpn�tþ2�pn�tþ3�...�pn;p1�p2�...�pt ; this may violate
one of the security requirements of an SS, that is, the integer X may be obtained by fewer than
t shares, and (ii) because the public moduli are all larger than private moduli, it is possible to recover
the integer X by (t�1) public shares. We will develop a simpler authenticated group key distribution
protocol based on the CRT in the next section.

3. OUR PROPOSED PROTOCOL

In this section, we propose a simple authenticated group key distribution protocol, which is based
on the CRT. The KGC first establishes a secret with each authorized group member in the registra-
tion. Then, in real-time operation, the KGC determines a group session key based on shared secrets
with all group members via the CRT and transmits the group key to all group members by broad-
casting public shares. Each group member can use his/her secret shared with the KGC as the private
share and the public shares to recover the group key.
Our protocol consists of three phases: (i) the registration, (ii) the generation of the group key, and

(iii) the distribution of the group key. Details of our protocol are included in the following.

3.1. Registration

Each user in a communication needs to register at the KGC initially. Let us assume that there are n
users, ui, for i = 1, 2, . . ., n. The KGC randomly selects n positive, pairwise, co-prime integers,
p1, p2, . . ., pn, and then chooses n positive integers, x1, x2, . . ., xn, satisfying xi< pi for i=1, 2, . . ., n.
The KGC shares the secret (xi, pi) (also called private share) with each user ui in a secure channel.
Registration phase for group members is shown in Figure 1.

3.2. Generation of the group key

Let U = {u1,u2, . . .,ut} denote a group consisting of t users who attempt to have a group communi-
cation. As illustrated in Figure 2, the KGC generates a group session key K following the steps
shown as follows:

Step (1) The initiator (a user) delivers a key generation request of a group communication involving
group members, U= {u1,u2, . . .,ut}, to the KGC.

Step (2) The KGC broadcasts a random integer, R, satisfying R< pj for j = 1, 2, . . ., t, to all
group members.

Step (3) Each group member, ui, sends a random integer, Ri, satisfying Ri< pj for j= 1, 2, . . ., t, to
the KGC.

Step (4) With the secrets shared with all group members and random integers, the KGC establishes
a system of simultaneous congruencies:

Figure 1. Registration phase.
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X ¼ x1 � R � R1 mod p1ð Þ;
X ¼ x2 � R � R2 mod p2ð Þ;

:
:
:

X ¼ xt � R � Rt mod ptð Þ:

From the CRT, the KGC computes the unique solution X in ZP, where P ¼ Qt
i¼1pi:

Step (5) The group key K is determined as K+ dp0 =X such that 0≤K< p0, where d is an integer and
p0<min{p1, p2, . . ., pt}.

3.3. Distribution of the group key

During this phase, the KGC distributes the group key K by broadcasting information as public
shares to all authorized group members. As a result, each group member can use his/her secret
(private share) shared with the KGC and the public information (public shares) to recover the group
key. Furthermore, mutual key confirmation can be achieved. Each group member can verify
whether the group key he/she obtained is valid by checking a separate authentication message trans-
mitted from the KGC; on the other hand, the KGC can check whether the group key that he/she gen-
erated is identical to the one that each group member has sent to him/her. The phase of the group
key distribution consists of following six steps. It is shown in Figure 3.

Step (1) The KGC picks (t�1) positive integers, p01, p02, . . ., p0t - 1, which satisfy the following
conditions:

(1) GCD p0i ; p
0
j

� � ¼ 1 for i ¼ 1; 2; . . . ; t � 1; j ¼ 1; 2; . . . ; t � 1 and i 6¼ j;

(2) GCD p0i ; pkð Þ ¼ 1 for i ¼ 1; 2; . . . ; t � 1 and k ¼ 1; 2; . . . ; t;

(3) X is in the t-threshold range, Zp01�p02�...�p0 t-1;p01�p02�...�p0 t-1�p00 ; where
p00 =min{pi, i=1,2, . . ., t}.

Step (2) The KGC computes x0i=X(mod p0i) for i=1, 2, . . ., t - 1. The KGC also generates an
authentication message, Auth1 = h1(K, p0,R,R1, R2, . . ., Rt, (x01, p01), (x02, p02), . . .,
(x0t - 1, p0t - 1)), where h1 is a collision-free, one-way hash function.

Step (3) The KGC broadcasts p0, {(x0i, p0i)}1≤ i≤ t� 1, and Auth1 to all authorized group members.
Step (4) Each authorized group member ui uses his/her private share, (xi�R�Ri, pi), and (t�1)

public shares, {(x0i, p0i)}1≤ i≤ t� 1, to construct a system of simultaneous congruencies:

Figure 2. Group key generation phase.

Y. LIU, L. HARN AND C.-C. CHANG

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (2013)
DOI: 10.1002/dac



X ¼ xi�R�Ri mod pið Þ;
X ¼ x

0
i mod p

0
i

� �
; i ¼ 1; 2; . . . ; t-1:

(

The unique solution X in Zp0 1�p0 2�...�p0 t-1;p0 1�p0 2�...�p0 t-1�p00 can be computed from the CRT. Thus,
each ui can recover the group key as K = X(mod p0).

Step (5) Each authorized group member ui computes h1(K, p0, R, R1, R2, . . ., Rt, (x01, p01), (x02,
p02), . . ., (x0t - 1, p0t - 1)), and checks whether the value is identical to Auth1. If the two values are
identical, ui authenticates that the group key K was sent by the KGC.

Step (6) ui sends Auth2 = h2(K, p0, R) to the KGC, where h2 is a collision-free, one-way hash function.
The KGC computes h2(K, p0, R) and checks whether the value is identical to Auth2. If the two
values are identical, mutual key confirmation is achieved.

4. ANALYSIS

In this section, we analyze the protocol and show that our proposed group key distribution protocol
possesses the following properties:

• Providing key confidentiality
• Providing key authentication
• Providing one-time group key
• Providing reuse of secrets
• Providing key updating
• Providing forward and backward secrecy

4.1. Key confidentiality

Our proposed protocol can provide key confidentiality due to the property of the SS scheme. In our
protocol, the KGC first generates an integer X via the CRT based on t private shares, (xi�R�Ri, pi),
for i=1, 2, . . ., t. Then, the KGC selects (t�1) positive, pairwise, co-prime integers, p01, p02, . . ., p0t - 1,
such that X is in the t-threshold range, Zp0 1�p0 2�...�p0 t-1;p0 1�p0 2�...�p0 t-1�p00 ; where p00 =min{pi, i=1, 2, . . ., t}.
The KGC broadcasts (t�1) public shares, (x0i, p0i), for i=1, 2, . . ., t� 1 to all authorized group mem-
bers. Upon receiving public shares, each authorized group member can use a total of t shares, that
is, his/her private share, (xi�R�Ri, pi), and (t�1) public shares, {(x0i,p0i)}1≤ i≤ t� 1, to compute X,

Figure 3. Group key distribution phase.
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and then to recover the group key K, but illegal users cannot obtain any useful information about the
group key.
Any user who does not belong to the group and makes effort to obtain the group key shared

among all authorized group members is called an outside attacker. The outside attacker can only
receive (t�1) public shares, {(x0i,p0i)}1≤ i≤ t� 1, broadcasted by the KGC and uses these public
shares to construct a system of simultaneous congruencies as follows:

X
0 ¼ x

0
1 mod p

0
1

� �
;

X
0 ¼ x

0
2 mod p

0
2

� �
;

:
:
:

X
0 ¼ x

0
t�1 mod p

0
t�1

� �
:

From the CRT, the outside attacker computes the integer X0 asX
0 ¼ Pt�1

i¼1
Ni�N 0

i�x0 i mod P
0� �
;where

P
0 ¼ Qt�1

i¼1p
0
i;Ni ¼ P

0

p0 i
and Ni �N0

i� 1(mod p0i). However, the integer X0 is in Zp0 1�p0 2�...�p0 t-1 ; which is

different from X in the t-threshold range,Zp0 1�p0 2�...�p0 t-1;p0 1�p0 2�...�p0 t-1�p00 ;where p
00 =min{pi, i=1, 2, . . ., t}.

Therefore, an outside attacker cannot obtain the real X.
Next, we analyze whether the group key K can be reconstructed by an outside attacker from X0.

Although X0 is different from X, there exists one relationship between these two values, that is,
X =X0 + bp01p02 . . . p0t� 1, where b is an integer. If the value, b, which shifts X

0 2 Zp0 1�p0 2�...�p0 t-1 to
X

0 þ bp
0
1p

0
2 . . . p

0
t�1 2 Zp0 1�p0 2�...�p0 t-1;p0 1�p0 2�...�p0 t-1�p00 ; can be determined, the value, X, can be obtained.

However, there are more than p0 possible values of b (i.e.,
p
0
1�p0 2�...�p0 t-1�p00
p0 1�p0 2�...�p0 t-1 > p0), which can shift X0

into the t-threshold range,Zp0 1�p0 2�...�p0 t-1;p0 1�p0 2�...�p0 t-1�p00 :But, there is only one value of b, which can shift
X0 to the value X. The successful probability of this approach is smaller than the probability of
randomly guessing the secret group key K. Therefore, no information is disclosed from these (t�1)
public shares. The security of this attack is perfect secrecy. This implies that our proposed protocol
can provide group key confidentiality. Moreover, the group key confidentiality is unconditionally
secure because it does not depend on any computational assumptions.

4.2. Key authentication

To provide group key authentication, the KGC broadcasts an authentication message, Auth1 =
h1(K, p0,R,R1, R2, . . ., Rt, (x01,p01), (x02,p02), . . ., (x0t - 1,p0t - 1)), to all authorized group members
in the group key distribution, where h1 is a collision-free, one-way hash function. The authentica-
tion message Auth1 uses the group key K, public information, p0, the transmitted random integers,
R,R1,R2, . . .,Rt, and public pairs (x01,p01), (x02,p02), . . ., (x0t - 1,p0t - 1), as its inputs. As discussed in
subsection 4.1, only authorized group members can obtain the group key K. An outside
attacker cannot forge an authentication message because he/she does not have a valid secret
shared with the KGC. In addition, any group member cannot forge an authentication message
because he/she does not know other authorized members’ secrets. Therefore, each authorized
group member can authenticate that the group key is indeed transmitted by the KGC rather
than by an attacker. On the other hand, each authorized group member ui sends Auth2 = h2
(K,p0,R) to the KGC, where h2 is another collision-free, one-way hash function. This can ensure
mutual key confirmation.

4.3. One time group key

One time group key means that different group keys must be used for different communications
involving the same group members. By providing one time group key, an outside attacker cannot
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reuse a previously compromised group key by replaying this compromised group key in future
communications. In our proposed protocol, the group key is determined on the basis of t secrets,
(xi�R�Ri, pi), for i = 1, 2, . . ., t, of group members, where Ri is an random integer of member,
ui. Therefore, when same group members starts a new conference, each member will selects a
new random integer, Ri. This can ensure the property of one time group key.

4.4. Reuse of secrets

Let us consider a group member who attempts to obtain other authorized members’ secrets shared
with the KGC. This type of group member is also called an inside attacker. Because an inside
attacker is an authorized member who has already known the group key, our proposed protocol
needs to prevent the inside attacker from obtaining other authorized members’ secrets. Because
each authorized group member ui’s secret, (xi,pi), is sent from the KGC in a secure channel during
the registration phase; it is impossible for the inside attacker to obtain other authorized group
members’ secrets. Thus, the secret shared with the KGC in the registration can be reused for
multiple group key distributions. It is unconditionally secure, whereas the security of Harn and
Lin’s protocol relies on the RSA assumption [12].

4.5. Key updating

In our protocol, an integer X is determined on the basis of t secrets, (xi�R�Ri, pi), for i = 1, 2, . . ., t,
of group members. The group key K is then computed as K =X(mod p0). By adding/removing any
member to/from the group, the KGC should update the group key to ensure that a previously used
group key will not be used in the future group communication. In the following, we will describe
the group key updating process, which can be implemented easily.
Suppose that a group consists of t members and each group member ui shares a secret, (xi,pi),

with the KGC. When a user uj joins the group, the KGC randomly selects a pair of secrets, (xj,pj)
that satisfy GCD(pj,pi) = 1 for i = 1, 2, . . ., t and xj< pj, and shares them with uj in a secure channel.
Then, the KGC sends the random integer, R, to uj and uj sends a random integer, Rj, to the KGC.
Afterward, the KGC computes an integer X00 by using (t + 1) secrets, (xi�R�Ri, pi) for i = 1, 2, . . .,
t + 1, via the CRT and updates the group key by K0 =X00(mod p0). In the phase of key distribution,
the KGC reselects t positive, pairwise, co-prime integers, p01, p02, . . ., p0t, such that X

00 2
Zp0 1�p0 2�...�p0 t ;p0 1�p0 2�...�p0 t �p00 ; where p00 =min{pi, i= 1, 2, . . ., t+ 1}. The KGC makes t pairs, {(x0i,p0i)}

1≤ i≤ t, public known as public shares. Each authorized member in the new group can use his/her
private share, (xi�R�Ri, pi), and t public shares, {(x0i,p0i)}1≤ i≤ t, to compute the new integer X00

and recover the new group key K0.
When a member uj leaves the group, the KGC deletes uj’s secret shared with the KGC. Thus, uj

becomes an unauthorized member. The KGC needs to update the group key for the (t�1) members
who remain in the group. The KGC uses (t�1) secrets, (xi�R�Ri, pi), for i = 1, 2, . . ., t - 1 to
generate the new group key K0 according to the CRT. Then, the KGC broadcasts (t�2) public
shares {(x0i,p0i)}1≤ i≤ t - 2 to (t�1) group members. As a result, each authorized member who
remains in the group can use his/her private share, (xi�R�Ri, pi), and (t�2) public shares,
{(x0i,p0i)}1≤ i≤ t - 2, to reconstruct the new group key K0.

4.6. Forward and backward secrecy

Forward secrecy guarantees that it is unable to discover any previous group key by compromising
the group’s current key. As discussed in subsection 4.5, the KGC can update the group key K to K0

when adding a member ui to the group. By the key updating approach adopted in subsection 4.5, the
new member ui cannot use the current key K0 and public shares to obtain the previous key K.
Backward secrecy ensures that any current group key cannot be determined from a previous key

that has been compromised. As discussed in subsection 4.5, the KGC can update the group key K to
K0 when removing a member uj from the group. By the key updating approach adopted in subsec-
tion 4.5, uj cannot obtain the current key K0 by the previous key K because he/she does not own a
private share.
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5. CONCLUSION

In this paper, we proposed an authenticated group key distribution protocol based on the CRT. Each
user needs to register and obtain a secret from the KGC initially. In real-time operation, the KGC
can broadcast a secret group key to all members based on all members’ secrets. The secret shared
between each user and the KGC can be reused for multiple group communications. The confiden-
tiality of our proposed protocol is unconditionally secure.
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