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Abstract 

In 2012, Piao et al. proposed a polynomial-based key 

management for secure intra-group and inter-group 

communication. In this notes, we point out that there are 

some security weaknesses of Piao et al.’s intra-group key 

distribution scheme. One main problem is that their scheme 

cannot prevent a group member to obtain other members’ 

secret keys shared with the controller. In addition, their 

scheme is suffered from the replay attack and cannot 

achieve the objectives of both perfect forward and 

backward secrecy. We provide a simple modified scheme 

to overcome these security weaknesses. 

Keywords: Perfect forward and backward secrecy, 
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1   Introduction 

Group communication has been widely developed in 

various communication applications and environments such 

as conferences [1, 6], wireless sensor networks [2, 7, 10,  

14], and ad hoc networks [5]. In a secure group 

communication, a dynamic group key needs to be shared 

among all group members. All group members will use the 

group key to protect their information. The polynomial-

based key distribution [1, 2, 7, 8, 11, 12, 13] is one of the 

group key distributions. Wang et al. [11, 12, 13] proposed a 

polynomial-based inter-group key sharing to use a 

controller to distribute personal key shares for inter-group 

communication. As shown in Figure 1, an l-degree 

polynomial Pi,j(x) constructed by the controller in Gi is used 

to distribute a secret group key such that a node (i.e., the 

variable x) in Gj and members of Gi can communicate with 

each other using the key. In 2012, Piao et al. [8] proposed a 

more efficient generation method of Pi,j(x) based on [11, 12, 

13] such that each member can construct Pi,j(x) by 

her/himself. They also developed another polynomial F(x) 

for intra-group key distribution such that all group 

members can efficiently retrieve the intra-group key from 

the broadcast message sent by the controller. Unfortunately, 

in this notes, we point out that there are some security 

weaknesses of Piao et al.’s intra-group key distribution 

scheme [8]. One main problem is that their scheme cannot 

prevent a group member to obtain other members’ secret 

keys shared with the controller. Furthermore, their scheme 

is suffered from the replay attack and cannot achieve the 

objectives of both perfect forward and backward secrecy. 

The remainder of this paper is organized as follows. In 

Section 2, we briefly review Piao et al.’s intra-group key 

sharing and re-keying, followed by the cryptanalysis on 

their scheme in Section 3. Subsequently, we provide a 

simple modified scheme and its detailed security analysis in 

Sections 4 and 5, respectively. Finally, we make 

conclusions in Section 6. 

 

 

Figure 1: An example of Wang et al.’s inter-group key 

sharing: a member S in G1 sends message to all of members 

in both G2 and G3. 
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2  Piao et al.’s Scheme 

Here, we briefly review the key management scheme of 

intra-group key sharing and re-keying proposed in [8]. The 

notations used in this scheme are defined as follows. 

Gk: the k-th group 

GKk: the intra-group key for members of Gk 

SKt: the pre-distributed secret key shared between the 

group controller and a member t in the same group 

F(x): the polynomial function in a finite field GF(p) used 

for deriving intra-group key GKk, where p is a large 

prime 

2.1   Intra-Group Key Sharing 

In a group Gk with n members, assume that each member 

has pre-shared a secret key SKt with the group controller 

through a secure channel. If the group controller wants to 

distribute the intra-group key GKk to all members for a 

secure group communication, the controller has to perform 

the following procedures. 

Step 1. The group controller selects an intra-group key GKk 

for all members in the group. 

Step 2. The group controller uses all secret keys shared 

with the group members to generate a polynomial 

F(x) and conceal the intra-group key GKk in it i.e., 

F(x) = (x-SK1)(x-SK2)…(x-SKn)+GKk. The controller 

then broadcasts F(x) to all members. 

Step 3. Upon receiving the polynomial F(x), every member 

can use her/his own secret key SKt to retrieve the 

intra-group key GKk by computing F(SKt). 

2.2   Re-Keying 

If there is any change in the group membership, the group 

controller has to renew the intra-group key for the sake of 

forward/backward secrecy. Based on the example given in 

Subsection 2.1, the re-keying for member joining and 

leaving are described in the following processes, 

respectively. 

2.2.1   For Member Joining 

Assume that a new member W wants to join in the group Gk. 

The group controller has to perform the following 

procedures. 

Step 1. The group controller gives a share key SKW to W in 

a secure channel. 

Step 2. The group controller generates a new intra-group 

key GK'k and constructs a new polynomial as F'(x) 

= (x-SK1)(x-SK2)…(x-SKn)(x-SKW)+GK'k. The 

controller then broadcasts F'(x) to all members. 

Step 3. Upon receiving the polynomial, every member can 

use her/his own secret key SKt to retrieve the intra-

group key GK'k by computing F'(SKt). 

2.2.2   For Member Leaving 

If a member Z leaves the group Gk, the group controller has 

to perform the following procedures. 

Step 1. The group controller generates a new intra-group 

key GK'k and constructs a new polynomial as 

F'(x)= (x-SK1)(x-SK2)…(x-SKZ-1)(x-SKZ+1)…(x-

SKn)+GK'k. The controller broadcasts F'(x) to 

members remained in the group. 

Step 2. Upon receiving the polynomial, every member can 

use her/his own secret key SKt to retrieve the intra-

group key GK'k by computing F'(SKt). 

3  Security Problems of Piao et al.’s Scheme 

In this section, we analyze Piao et al.’s scheme [8] and 

point out some security problems. 

3.1   One-Time Use of Pre-Shared Secrets 

In [8], the polynomial F(x) in a finite field GF(p), where p 

is a large prime, is used to distribute the intra-group key. 

As pointed out in [4], if the modulus used for the 

polynomial operation is a prime, it may suffer from the so-

called internal attack. The internal attack is launched by a 

legitimate group member who knows the group key. But, 

the attacker tries to obtain the secrets of other group 

members shared with the controller. For example, if a 

dishonest member, Ivy, in a group has received a 

polynomial F(x) = (x-SK1)(x-SK2)…(x-SKI)…(x-SKn)+GKk 

from the group controller and retrieved the intra-group key 

GKk, she can further deduce another polynomial in GF(p) 

as H(x) = (F(x)-GKk)/(x-SKI) = (x-SK1)(x-SK2)…(x-SKI-1)(x-

SKI+1)…(x-SKn). It is computationally feasible for solving 

the roots of the polynomial H(x), which are other members’ 

secret keys SKk’s. Thus, the pre-shared secrets of members 

in Piao et al.’s scheme can only be used for a one-time 

group communication. 

3.2   Replay Attack 

If an attacker, Eve, intercepts the polynomial F(x) sent by 
the group controller, she can easily mount the replay attack 
by replaying it. This is because group members do not 
verify the freshness of the group key. Assume that Eve has 
recorded the polynomial F_old(x) = (x-SK1)(x-SK2)…(x-
SKn)+GKk_old. Following, we consider different scenarios 
associated with this attack. 

Case 1. Assume that the group membership does not change 
after the group key GKk_old being compromised by Eve. 

Assume that the group controller sends a new key 
distribution message F_new(x) = (x-SK1)(x-SK2)…(x-
SKn)+GKk_new to members of the same group, where GKk_new 
is the new intra-group key. The attacker, Eve, can replay the 
polynomial F_old(x) corresponding to the group key GKk_old 



International Journal of Network Security, Vol.16, No.2, PP.143-148, Mar. 2014 145 

which has been compromised by Eve already. Obviously, all 
members in the group can retrieve the intra-group key 
GKk_old and use the key GKk_old to communicate with each 
other. However, Eve knows the content of all future 
communications. 

Case 2. Assume that a new member has joined in the group 
after GKk_old being used for the group communication; but 
the group key GKk_old has not been compromised by Eve. 

Assume that the group controller sends a new key 
distribution message F_new(x) = (x-SK1)(x-SK2)…(x-SKn)(x-
SKW)+GKk_new when a new member, William, has joined in 
the group, where SKW is William’s secret key shared with 
the controller and GKk_new is the new intra-group key. The 
attacker, Eve, can replay the polynomial F_old(x) to all 
members in the group. After receiving the replayed message, 
only William cannot retrieve the corresponding intra-group 
key GKk_old from F_old(x). This is because that the replayed 
polynomial F_old(x) = (x-SK1)(x-SK2)…(x-SKn)+GKk_old is 
generated before William joining in the group. Obviously, 
when William computes F_old(SKW) using his own secret key 
SKW, he cannot get the same group key as other members’ 
obtained. This will end up an unsuccessful group 
communication. 

3.3   No Forward/Backward Secrecy 

Assume that a dishonest user, David, who used to be a 

group member knowing the group key GKk_old, attempts to 

obtain the content of communications which he is not 

authorized to. 

3.3.1   No Forward Secrecy 

Assume that David has stored the polynomial F_old(x) = (x-

SK1)(x-SK2)…(x-SKn)+GKk_old and known the key, GKk_old, 

since he was a member of this group. Afterward, he just 

replays the polynomial disguised as a new key distribution 

message to all members in the group. He can easily learn 

the traffic of the group communications which he is not 

authorized to. This is because they will use the same key 

GKk_old to communicate with each other. It is noteworthy 

that such attack is based on the assumption that the group 

membership does not change after David leaving the group. 

As a result, Piao et al.’s intra-group key distribution 

scheme [8] does not possess perfect forward secrecy. 

3.3.2   No Backward Secrecy 

Assume that David intends to deduce the previous intra-

group key which he is not authorized to. He can launch the 

attack through following procedures. 

Step 1. David intercepts the polynomial F(x) sent by the 

group controller and then joins in the group. 

Assume that the polynomial he intercepted is F(x) 

= (x-SK1)(x-SK2)…(x-SKn)+GKk. 

Step 2. After David joining in the group, the group 

controller gives a share key SKD to him through a 

secure channel. In addition, the controller 

generates a new intra-group key GKk_new and 

constructs a new polynomial as F_new(x) = (x-

SK1)(x-SK2)…(x-SKn)(x-SKD)+GKk_new. The 

controller sends F_new(x) to all members including 

David. 

Step 3. Upon receiving the polynomial, David can use his 

own secret key SKD to retrieve the intra-group key 

GKk_new by computing F_new(SKD). Then, he 

computes a new polynomial H(x) = (F_new(x) - 

GKk_new)/(x-SKD). 

Step 4. David can deduce the previous intra-group key GKk 

by computing F(x) - H(x). Obviously, the key he 

deduced is valid since H(x) = (F_new(x) - 

GKk_new)/(x-SKD) = (x-SK1)(x-SK2)…(x-SKn). 

Thus, Piao et al.’s intra-group key distribution scheme 

[8] does not possess perfect backward secrecy. 

4   A Simple Modification 

In this section, we provide a simple modified scheme to 

overcome security weaknesses as mentioned in last section. 

In order to prevent the internal attack as we have described 

previously, we use a composite number as the modulus i.e., 

N = pq, where p and q are large primes used in RSA 

scheme [9]. In addition, we add random challenges of 

group members to overcome the replay attack. 

Similarly, we assume that in a group Gk with n 

members, all members have pre-shared their secret keys 

SKt’s with the group controller. The group controller 

performs following procedures to distribute the intra-group 

key GKk to all members. 

Step 1. The group controller broadcasts a group 

communication message to all members. 

Step 2. After receiving the message, each member 

randomly chooses a challenge Ct from ZN* and 

sends it back to the controller. 

Step 3. The group controller generates an intra-group key 

GKk for all members in the group communication. 

Then, the controller uses all challenges and secret 

keys shared with the group members to generate a 

polynomial F(x) with modulus N (i.e., N = pq, 

where p and q are large primes) as F(x) = (x-

(SK1⊕C1))(x-(SK2⊕C2))…(x-

(SKn⊕Cn))+GKk.  

Finally, the controller computes an authentication message 

as Auth = h(GKk) and sends it along with F(x) to 

the members, where h(.) is a secure one-way hash 

function. 

Step 4. Upon receiving the key distribution message, every 

member can use her/his own secret key SKt and 

challenge Ct to retrieve the intra-group key GKk by 

computing F(SKt⊕Ct). After retrieving the intra-

group key, every member also can authenticate the 

group key by checking h(GKk) ?= Auth. 
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5   Discussions 

Here, we analyze our modified scheme with respect to each 

security problem as we have mentioned in Section 3. 

5.1   Security of Pre-Shared Secrets 

In our proposed scheme, we replace the prime modulus p 

by the composite number N, where N = pq as used in RSA 

[9]. Assume that a dishonest member, Ivy, in a group has 

received the polynomial F(x) = (x-(SK1⊕C1))(x-

(SK2⊕C2))…(x-(SKI⊕CI))…(x-(SKn⊕Cn))+GKk from the 

group controller and retrieved the intra-group key GKk. Ivy 

tries to obtain the secret keys SKt’s of other group members 

shared with the controller by deducing another polynomial 

in ZN* as 

H(x) = (F (x) - GKk)/(x-(SKI⊕CI))  

= (x-(SK1⊕C1))(x-(SK2⊕C2))…(x-(SKI-1⊕CI-1))(x-

(SKI+1⊕CI+1))…(x-(SKn⊕Cn)). 

She needs to solve the roots of the polynomial H(x)≡0 

(mod N) in order to find the secrets. In other words, Ivy 

needs to solve two separate equations as H(x)≡0 (mod p) 

and H(x)≡0 (mod q). Nevertheless, this approach is 

impossible since it is computationally infeasible to factor N 

(i.e, the factorization assumption in RSA [9]). It is 

noteworthy that Coppersmith has shown that finding small 

roots of an univariate polynomial equation modulo an 

integer N of unknown factorization is easy [3]. However, 

the secret in our application is at least 100 bits so it is not a 

“small solution”. Thus, the algorithm described in [3] 

cannot be used to solve the pre-shared secrets of members 

in our proposed scheme. 

5.2   Replay Attack 

Assume that there is an adversary, Eve, who has 

intercepted messages transmitted publicly. If Eve intercepts 

the polynomial F(x) sent by the group controller and 

attempts to mount the replay attack by replaying it, no 

matter whether the group membership has changed or not, 

this attack cannot work properly. This is because the 

polynomial F(x) involves each member’s random challenge 

Ct which is refreshed for each key distribution. The group 

members can verify the freshness of the group key. 

Following, we give an example to analyze the replay attack 

in detail. 

Assume that the group controller sends a new key 

distribution message F_new(x) = (x-(SK1⊕C1_new))(x-

(SK2⊕C2_new))…(x-(SKn⊕Cn_new))+GKk_new with the 

authentication message Auth_new = h(GKk_new) to the 

members of the same group. Note that GKk_new is the new 

intra-group key and Ct_news are new challenges of all 

members used in current session. If Eve intends to launch 

the replay attack, she must replay the polynomial  

F_old(x) = (x-(SK1⊕C1_old))(x-(SK2⊕C2_old))… 

(x-(SKn⊕Cn_old)) + GKk_old  

and the corresponding authentication message Auth_old = 

h(GKk_old) which has been stored by her already. After 

receiving the replayed key distribution message, every 

member uses her/his own secret key SKt and current 

challenge Ct_new to compute the intra-group key GK'k = 

F_old(SKt⊕Ct_new). Obviously, the computed GK'k is 

different from GKk_old which was concealed in F_old(x). 

Hence, every member can verify that this key is incorrect 

by checking h(GK'k) ?= Auth_old and then asks the 

controller to resend another key distribution message. As a 

result, the random challenges and the authentication 

message used in our proposed scheme can overcome the 

replay attack. 

5.3   Forward/Backward Secrecy 

Assume that an adversary (i.e., a dishonest member or an 

external attacker), Eve, who has compromised the group 

key GKk_old in the polynomial F_old(x), attempts to obtain 

the content of communications that she is not authorized to. 

We consider different scenarios associated with 

forward/backward secrecy. 

Case 1. Assume that Eve intends to destroy forward secrecy 

by replaying old key distribution messages F_old(x) and 

Auth_old. 

Assume that the group controller sends a new key 

distribution message F_new(x) = (x-(SK1⊕C1_new))(x-

(SK2⊕C2_new))…(x-(SKn⊕Cn_new))+GKk_new and the 

authentication message Auth_new = h(GKk_new) to members 

of the same group, where GKk_new is the new intra-group 

key and Ct_new’s are new challenges of all members used in 

current session. In order to make group members to use old 

key GKk_old to communicate with each other, Eve replays 

the polynomial F_old(x) and Auth_old disguised as a new 

key distribution message to all members in the group. By 

following our proposed scheme, this attack cannot work 

properly. As mentioned in Subsection 5.2, the key retrieved 

by every member is different from GKk_old. This is because 

each member’s random challenge Ct associated with the 

polynomial F(x) is refreshed for each key distribution. 

Hence, all members would not use the retrieved key for 

group communication. The forward secrecy is achieved. 

Case 2. Assume that Eve intends to destroy 

forward/backward secrecy by deducing previous/following 

intra-group key from GKk_old in the polynomial F_old(x). 

In our proposed scheme, the intra-group keys GKk’s 

used in different sessions are all independent. Obviously, it 

is impossible to reveal other keys from a compromised key 

GKk_old. Furthermore, if Eve intends to deduce the 

previous/following intra-group key from the polynomial 

F_old(x), she may deduce another polynomial in ZN* (i.e., N 

= pq as used in RSA [9]) as H(x) = F_old (x) - GKk_old = (x-

(SK1⊕C1_old))(x-(SK2⊕C2_old))…(x-(SKn⊕Cn_old)). Then, 

she tries to obtain the secret key SKt of each group member 

shared with the group controller from H(x). As explained in 

Subsection 5.1, it is computationally infeasible for solving 

the roots of the polynomial H(x). Hence, Eve cannot obtain 
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the secret SKt of each group member. Obviously, Eve 

cannot deduce the corresponding intra-group key from the 

previous/following polynomial without knowing group 

members’ secret keys SKt’s. As a result, our proposed 

scheme can achieve perfect forward/backward secrecy. 

6   Conclusions 

In this paper, we have described the security problems of 

Piao et al.’s intra-group key distribution scheme [8]. In 

their proposed scheme, a prime is used as the modulus for 

the polynomial operation. This setting cannot prevent a 

group member to obtain other members’ secret keys shared 

with the controller. In addition, Piao et al.’s scheme is 

suffered from the replay attack and cannot achieve the 

objectives of both perfect forward and backward secrecy. 

We also provided a simple modified scheme to overcome 

these security problems. Detailed security analysis is also 

included.    
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