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Shamir’s (t, n) secret sharing scheme (SS) is based on a univariate polynomial and is the 
most cited SS in the literature. The secret in a (t, n) SS can be recovered either by exactly t
or more than t shareholders. Most SSs only consider when there are exactly t shareholders 
participated in the secret reconstruction. In this paper, we examine security issues related 
to the secret reconstruction if there are more than t shareholders participated in the secret 
reconstruction. We propose a dynamic threshold SS based on a bivariate polynomial in 
which shares generated by the dealer can be used to reconstruct the secret but having 
a larger threshold which is equivalent to the exact number of participated shareholders 
in the process. In addition, we extend the proposed scheme to enable shares which can 
also be used to establish pairwise keys to protect the reconstructed secret from non-
shareholders. Shamir’s SS has been used in conjunction with other public-key algorithms in 
most existing threshold algorithms. Our proposed SS can also be applied to the threshold 
cryptography to develop efficient threshold algorithms.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The (t, n) secret sharing scheme (SS) was propose by 
Shamir [1] and Blakley [2] separately in 1979. In a (t, n) SS, 
the dealer divides the secret into n shares such that 
(a) the secret can be recovered if there are t or more 
than t shares, and (b) the secret cannot be recovered 
if there are fewer than t shares. The (t, n) SS can be 
implemented by different mathematical tools. For exam-
ple, Shamir’s scheme is based on a univariate polynomial, 
Blakely’s scheme [1] is based on the geometry, Mignot-
te’s scheme [3], Asmuth–Bloom’s scheme [4] are based on 
the Chinese remainder theorem (CRT) and McEliece et al. 
scheme [5] is based on Reed–Solomon codes.
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SS has become one of most popular cryptographic tools 
in many protocols of multi-party computing. The secret re-
construction of Shamir’s SS is very simple and is based on 
the Lagrange interpolation formula. However, in the secret 
reconstruction, additional mechanisms are needed to pro-
tect the secret; otherwise, non-shareholders (i.e., outside 
attackers) or dishonest shareholders’ (i.e., inside attackers) 
can take advantage over honest shareholders.

In 1985, Chor et al. [6] proposed the first verifiable se-
cret sharing (VSS). Verifiability is the property of a VSS 
which allows shareholders to verify their shares. Invalid 
shares may be caused by the dealer during generation or 
by channel noise during transmission. VSS is executed by 
shareholders after receiving their shares from the dealer 
but before using their shares to reconstruct the secret. 
If VSS has detected/identified invalid shares, shareholders 
can request the dealer to regenerate new shares. There are 
vast research papers on the VSS in the literature. Based to 

http://dx.doi.org/10.1016/j.ipl.2015.06.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:harnl@umkc.edu
mailto:cherryjingfang@gmail.com
http://dx.doi.org/10.1016/j.ipl.2015.06.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.06.014&domain=pdf


852 L. Harn, C.-F. Hsu / Information Processing Letters 115 (2015) 851–857
security assumptions, we can classify VSSs into two dif-
ferent types, schemes that are computationally secure and 
unconditionally secure. For example, Feldman [7] and Ped-
ersen [8] developed non-interactive VSSs based on cryp-
tographic commitment schemes. The security of Feldman’s 
VSS is based on the hardness of solving discrete logarithm, 
while the privacy of Pedersen’s VSS is unconditionally se-
cure and the correctness of the shares depends on a com-
putational assumption. Benaloh [9] proposed an interactive 
VSS scheme and it is unconditionally secure. Stinson et 
al. [10] proposed an unconditionally secure VSS and later, 
Patra et al. [11] proposed a generalized VSS scheme. In 
1996, Stadler [12] proposed the first publicly verifiable se-
cret sharing (PVSS) scheme. A PVSS scheme allows each 
shareholder to verify the validity of all shares, including 
both shares of his/her own and other shareholders. How-
ever, in most non-interactive VSSs [7,8], shareholders can 
only verify the validity of his/her own share; but not other 
shareholders’ shares.

When shareholders present their shares in the secret 
reconstruction, dishonest shareholders (i.e., cheaters) can 
always exclusively derive the secret by presenting fake 
shares and thus the other honest shareholders get noth-
ing but a fake secret. It is easy to see that Shamir’s (t, n) 
secret sharing scheme does not prevent dishonest share-
holders in the secret reconstruction. Cheater detection and 
identification are important functions in order to provide 
fair reconstruction of a secret. In 1989, Tompa and Woll 
[13] proposed the first cheater detection scheme. There 
are many research papers in the literature to propose al-
gorithms for cheater detection and identification. Most of 
these algorithms [14–17] assume that there are exactly t
shareholders participated in the secret reconstruction. The 
dealer needs to provide additional information to enable 
shareholders to detect and identify cheaters. Some algo-
rithms [18,19] use error-correcting codes to detect and 
identify fake shares. In a recent paper, Harn and Lin [20]
proposed a new approach to detect and identify cheaters. 
The algorithm uses shares to detect and identify cheaters. 
When there are more than t (i.e., the threshold) shares, 
for example j (i.e., t < j) shares in the secret reconstruc-
tion, the redundant shares can be used to detect and iden-
tify cheaters. In this approach, shares in a secret sharing 
scheme serve for two purposes; that are, (a) reconstructing 
the secret and (b) detecting and identifying cheaters. The 
detectability and identifiability of cheaters is proportional 
to the number of redundant shares in the secret recon-
struction.

In this paper, we consider different security issues in 
the secret reconstruction. In particular, we examine prob-
lems if there are more than t shareholders participated in 
the secret reconstruction. We will discuss these problems 
in Section 3. Furthermore, we propose dynamic thresh-
old SSs to overcome these problems. Our proposed SSs are 
based on a bivariate polynomial. Shares obtained from the 
dealer can serve for three different purposes, (a) recon-
structing the secret, (b) reconstructing the secret having 
a dynamic threshold and (c) protecting exchange informa-
tion in the secret reconstruction.
We summarize the contributions of our paper.

• A dynamic threshold SS based on a bivariate polyno-
mial is proposed in which shares obtained from the 
dealer initially can be used to reconstruct the secret 
but having a larger threshold which is equivalent to 
the exact number of participants.

• An efficient (t, n) SS is proposed in which shares gen-
erated by the dealer can serve for three different pur-
poses, (a) reconstructing the secret, (b) reconstructing 
the secret having a dynamic threshold and (c) protect-
ing exchange information in the secret reconstruction.

• Our proposed SSs can be extended to the thresh-
old cryptography to develop efficient threshold cryp-
tographic algorithms (threshold signature/encryption).

The rest of paper is organized as follows. In Section 2, 
we review SSs based on polynomials. We discuss some 
security issues in the secret reconstruction in Section 3. 
A dynamic threshold SS and an efficient (t, n) SS based on 
a bivariate polynomial are proposed in Sections 4 and 5, 
respectively. The application of our proposed SS to the 
threshold cryptography is discussed in Section 6. The con-
clusion is given in Section 7.

2. Review of SSs based on polynomials

In Shamir’s (t, n) SS [1], the dealer selects a univariate 
polynomial, f (x), with degree t − 1 and f (0) = s, where 
s is the secret. The dealer generates shares, f (xi), i =
1, 2, . . . , n, for shareholders, where xi is the public infor-
mation associated with each shareholder, Ui . Each share, 
f (xi), is an integer in G F (p). Shamir’s (t, n) SS satisfies 
both security requirements of a (t, n) SS. That are, (a) with 
t or more than t shares can reconstruct the secret, and 
(b) with fewer than t shares cannot obtain any informa-
tion of the secret. Shamir’s SS is unconditionally secure.

Shamir’s (t, n) SS does not provide the ability to al-
low shareholders to verify their shares obtained from the 
dealer. In 1985, Chor et al. [14] extended the notion of 
SS and proposed the first verifiable secret sharing (VSS). 
Verifiability is the property of a VSS which allows share-
holders to verify their shares. Invalid shares may be caused 
by the dealer during generation or by channel noise during 
transmission. VSS is executed by shareholders after receiv-
ing their shares from the dealer but before using their 
shares to reconstruct the secret. If VSS has detected/identi-
fied invalid shares, shareholders can request the dealer to 
regenerate new shares. There are many (t, n) VSSs [21–27]
based on bivariate polynomials, denoted them as BVSSs. 
A bivariate polynomial with degree t − 1 is represented as 
F (x, y) = a0,0 + a1,0x + a0,1 y + a2,0x2 + a1,1xy + a0,2 y2 +
. . .+at−1,0xt−1 +at−2,1xt−2 y + . . .+a0,t−1 yt−1nod p, where 
ai, j ∈ G F (p), ∀i, j ∈ [0, t − 1]. If the coefficients satisfy 
ai, j = a j,i , ∀i, j ∈ [0, t − 1], it is a symmetric bivariate poly-
nomial. Shares generated by a bivariate polynomial enable 
pairwise keys to be shared between any pair of sharehold-
ers. We can classify BVSSs into two types, the asymmetric 
BVSSs, denoted them as ABVSSs [21,22,24,26] and the sym-
metric BVSSs, denoted them as SBVSSs [24–27]. In all exist-
ing (t, n) SBVSSs, the dealer selects a bivariate polynomial, 
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F (x, y), with degree t − 1 and F (0, 0) = s, where s is the 
secret. The dealer generates shares, F (xi, y), i = 1, 2, . . . , n, 
for shareholders, where xi is the public information as-
sociated with each shareholder, Ui . Each share, F (xi, y), 
is a univariate polynomial with degree t − 1. Note that 
shares generated in an SBVSS satisfy F (xi, x j) = F (x j, xi), 
∀i, j ∈ [0, t − 1], the pairwise key, F (xi, x j) = F (x j, xi), can 
be shared between the pair of shareholders, Ui and U j . In 
a similar way, in an ABVSS, the dealer generates a pair of 
shares, F (xi, y) and F (x, xi), i = 1, 2, . . . , n, for each share-
holder and the pairwise secret key, F (xi, x j) or F (x j, xi), 
can also be shared between the pair of shareholders, Ui

and U j .

3. Security issues in the secret reconstruction

In a (t, n) SS, the secret can be recovered if there are 
exactly t or more than t shares. Most existing SSs only con-
sider when there are exactly t shareholders participated in 
the secret reconstruction. In this paper, we examine secu-
rity issues related to the secret reconstruction when there 
are more than t shareholders participated in the secret re-
construction.

If there are more than t shareholders participated in the 
secret reconstruction, one straightforward solution is to se-
lect exactly t shareholders to actively act in the process. 
Since non-shareholders may impersonate to be sharehold-
ers participated in the secret reconstruction to gain the 
access of the secret, employing a user authentication or 
a VSS scheme can prevent this security threat. However, 
all user authentication schemes or VSSs verify sharehold-
ers/shares one at a time. It is a time-consuming process 
to verify all shareholders/shares. There is one more serious 
problem following this approach. That is, the reconstructed 
secret is only limited to t shareholders but not to all par-
ticipated shareholders. In some applications, it is necessary 
to let all participated shareholders know the secret. This 
limitation makes this solution undesirable.

One alternative solution is to require that all partic-
ipants actively act in the secret reconstruction and the 
recovered secret is shared among all participated share-
holders. In this solution, every shareholder needs to com-
pute a value using his/her share and send this value to 
all other participants. The reconstructed secret is computed 
using all values of participants. Shamir’s secret reconstruc-
tion scheme can be generalized to take more than t shares. 
For example, when there are j (i.e., t < j ≤ n) sharehold-
ers with their shares, { f (x1), f (x2), . . . , f (x j)}, participated 
in the secret reconstruction, the secret can be computed 
as s = f (0) = ∑ j

r=1 f (xr) 
∏ j

v=1,v �=r
−xv

xr−xv
mod p. In this gen-

eralization, each participant needs to contribute his/her 
share in the secret reconstruction. However, this gener-
alization cannot prevent an attacker from obtaining the 
secret. This is because the threshold of shares is t . The 
attacker needs only t shares to recover the secret. Again, 
employing a user authentication or a VSS scheme to ensure 
that all participants are shareholders can prevent this se-
curity threat. But, this will add additional communication 
and computational complexity to the secret reconstruction 
process.
Employing a threshold changeable SS (TCSS) in which 
shares generated by the dealer initially can be used to 
reconstruct the secret but having a larger threshold j
(i.e., t < j) which is equivalent to the number of partic-
ipants is an alternative solution. In 1999, Martin et al. 
[28] proposed the first TCSS. TCSSs can be classified into 
three types, schemes based on a linear polynomial [29,30], 
schemes based on the geometry [31], and schemes based 
on the CRT [32,33]. Since standard Shamir’s SS is very 
simple and is unconditionally secure, most efforts have 
been devoted to propose TCSSs [29,34] to support standard 
Shamir’s SS. Most TCSSs are interactive and need secure 
channels to refresh new shares. In 2004, Steinfeld et al. 
[29] proposed a Lattice-based TCSS to support standard 
Shamir’s secret generation algorithm. Their scheme does 
not need any secure channels and is called a TCSS with-
out dealer. However, their scheme cannot use standard 
Shamir’s secret reconstruction to recover the secret. Re-
cently, a dealer-free TCSS is proposed by Nojoumian et al. 
[35] and a collusion attack resistance TCSS is proposed by 
Zhang et al. [36]; but both TCSSs need interactions among 
shareholders in the secret reconstruction. In the next sec-
tion, we propose a dynamic threshold SS based on a bi-
variate polynomial. In our proposed scheme, shares gen-
erated by the dealer initially can be used to reconstruct 
the secret but having a larger threshold which is equiva-
lent to the number of participants. Our proposed scheme is 
dealer-free and non-interactive. Furthermore, our proposed 
scheme can support standard Shamir’s SS and secret re-
construction.

The shares released by participated shareholders in the 
secret reconstruction need to be protected by communi-
cation keys; otherwise, non-shareholders can also obtain 
the secret. The key establishment protocol is used to es-
tablish secret keys for shareholders. However, adding a 
key establishment protocol in the secret reconstruction can 
slow down the secret reconstruction process. In Section 5, 
we extend our proposed dynamic threshold SS to enable 
shares generated by the dealer initially can serve for three 
different purposes, (a) reconstructing the secret, (b) recon-
structing the secret having a dynamic threshold and (c) 
protecting exchange information in the secret reconstruc-
tion.

4. Proposed dynamic threshold SS based on a bivariate 
polynomial

There is one major difference between shares gener-
ated by using a univariate polynomial and using a bivariate 
polynomial. The shares generated by a univariate polyno-
mial are integers in G F (p); but shares generated by a 
bivariate polynomial are univariate polynomials with de-
gree t − 1. In this section, we introduce a dynamic thresh-
old SS, in which shares generated initially by the dealer 
having the threshold t can be used to reconstruct a secret 
having a larger threshold j, with t < j ≤ 1 + t(t+1)

2 (we
will provide detail discussion on the upper bound of this 
dynamic range in Section 4.2.1). Our proposed scheme is 
dealer-free and non-interactive. In other words, depending 
on the number of participated shareholders, j, each par-
ticipated shareholder uses his/her share obtained from the 
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dealer initially which has the threshold t to compute and 
released a value to all other shareholders. It needs exactly 
j released values in order to recover the secret; otherwise, 
no information of the secret is revealed.

4.1. Algorithm

Share generation:
The dealer selects a t − 1 degree symmetric polynomial,

F (x, y) = a0,0 + a1,0x + a0,1 y + a2,0x2 + a1,1xy + a0,2 y2

+ . . . + at−1,0xt−1 + at−2,1xt−2 y + . . .

+ a0,t−1 yt−1nod p,

where ai, j ∈ Z p , ai, j = a j,i , ∀i, j ∈ [0, t − 1], and the secret 
s ∈ Z p satisfies s = F (0, 0) + bF (1, 1), where b ∈ Z p . The 
dealer computes shares, si(y) = F (xi, y)mod p, for share-
holders, Ui , i = 1, 2, . . . , n, where xi /∈ {0, 1} is the pub-
lic information associated with each shareholder, Ui . The 
dealer sends each share, si(y), to shareholder Ui secretly.

Secret reconstruction:
When j (i.e., t < j ≤ 1 + t(t+1)

2 ) shareholders, for exam-
ple {U v1 , U v2 , . . . , U v j }, want to recover the secret, each 
shareholder, U vi , accesses the public information, b, v and 
uses his/her shares, svi (y), to execute the following steps.

Step 1.
Each shareholder U vi uses his share, svi (y), to compute

w vi = svi (0)

j∏

l=1,l �=i

−xvl

xvi − xvl

+ bsvi (1)

j∏

l=1,l �=i

1 − xvl

xvi − xvl

mod p.

w vi is sent to other shareholders.

Step 2.
After receiving w vi , i = 1, 2, . . . , j, each shareholder com-

putes s = ∑ j
i=1 w vi mod p.

Remark 1. We want to point out that the upper bound of 
the threshold range should be 1 + t(t+1)

2 ≤ n, where n is the 
total number of shares generated by the dealer; otherwise, 
if 1 + t(t+1)

2 > n, the secret can never be reconstructed.

4.2. Correctness of the secret reconstruction

Theorem 1. The secret can be reconstructed as s = ∑ j
i=1 w vi ×

mod p.

Proof. If all j shareholders act honestly to compute and 
release values, w vi = svi (0) 

∏ j
l=1,l �=i

−xvl
xvi −xvl

+ bsvi (1)×
∏ j

l=1,l �=i
1−xvl

x −x mod p, i = 1, 2, . . . , j, then we have

vi vl
s =
j∑

i=1

w vi mod p

=
j∑

i=1

svi (0)

j∏

l=1,l �=i

−xvl

xvi − xvl

+ b
j∑

i=1

svi (1)

j∏

l=1,l �=i

1 − xvl

xvi − xvl

mod p

=
j∑

i=1

F (xvi ,0)

j∏

l=1,l �=i

−xvl

xvi − xvl

+ b
j∑

i=1

F (xvi ,1)

j∏

l=1,l �=i

1 − xvl

xvi − xvl

mod p

= F (0,0) + bF (1,1)

= s. �
4.2.1. Secrecy of shares

In the following discussion, we analyze the secrecy 
of shares and the secrecy of the secret in different sub-
sections. In our proposed scheme, each shareholder has 
one share which is a univariate polynomial having t − 1
degree. Since each released value, w vi , is a linear com-
bination of two values, svi (0) and bsvi (1), of each share, 
we want to show that the secrecy of the shares cannot be 
obtained from either a single released value or multiple re-
leased values; otherwise, fewer than j shares can recover 
the secret which violates the security requirement.

It is obvious that it is impossible to directly solve the 
two values, svi (0) and bsvi (1), from each released value, 
w vi = svi (0) 

∏ j
l=1,l �=i

−xvl
xvi −xvl

+ bsvi (1) 
∏ j

l=1,l �=i
1−xvl

xvi −xvl
mod p. 

In the following discussion, we consider the secrecy 
of shares from multiple released values. Since the new 
threshold, j, is limited to be t < j ≤ 1 + t(t+1)

2 , in the 
following discussion, we analyze the secrecy of shares if 
the new threshold is k = 1 + t(t+1)

2 . We want to show 
that the shares cannot be recovered from k − 1 released 
values; otherwise, fewer than the threshold can recon-
struct the secret. If the secrecy of shares is satisfied for 
this threshold, the secrecy of shares for other thresholds 
can also be satisfied. Since each released value, w vi =
svi (0) 

∏ j
l=1,l �=i

−xvl
xvi −xvl

+ bsvi (1) 
∏ j

l=1,l �=i
1−xvl

xvi −xvl
mod p =

F (xvi , 0) 
∏ j

l=1,l �=i
−xvl

xvi −xvl
+ bF (xvi , 1) 

∏ j
l=1,l �=i

1−xvl
xvi −xvl

mod p, 

is a linear function of t(t+1)
2 coefficients of the symmet-

ric bivariate polynomial F (x, y) = a0,0 + a1,0x + a0,1 y +
a2,0x2 + a1,1xy + a0,2 y2 + . . . + at−1,0xt−1 + at−2,1xt−2 y +
. . . + a0,t−1 yt−1nod p, k − 1 equations can be established 
from k −1 released values. The condition, t < j ≤ 1 + t(t+1)

2 , 
implies that t(t+1)

2 > k − 1. Therefore, it is impossible to 
solve the polynomial, fl(x), from these k − 1 equations. 
The secrecy of shares cannot be recovered from released 
values in the secret reconstruction.
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4.2.2. Secrecy of the secret
Since s = ∑ j

i=1 w vi mod p, it is obvious that it needs 
w vi , i = 1, 2, . . . , j, to obtain the secret and fewer than j
values of w vi , cannot recover the secret.

The secret, s = F (0, 0) + bF (1, 1), is a linear combi-
nation of t(t+1)

2 coefficients of the symmetric bivariate 
polynomial, F (x, y). For any threshold, j (i.e., t < j ≤
1 + t(t+1)

2 ), if there are j − 1 released values, w vi =
svi (0) 

∏ j
l=1,l �=i

−xvl
xvi −xvl

+ bsvi (1) 
∏ j

l=1,l �=i
1−xvl

xvi −xvl
mod p, from 

Section 4.2.1, we show that it is impossible to solve the 
polynomial, F (x, y). The security of the proposed scheme 
is unconditionally secure.

Remark 2. In Shamir’s (t, n) SS, each shareholder has only 
one share; but, in our proposed TCSS, the number of shares 
of each shareholder is expanded by a factor of t . However, 
shares in our proposed scheme can be used to reconstruct 
the secret but having a different threshold; but shares 
in Shamir’s (t, n) SS can only be used to reconstruct the 
secret having the original threshold. One straightforward 
approach to implement a TCSS is that during share gener-
ation, the dealer generates multiple shares for each share-
holder and each share can be used to reconstruct the se-
cret having a distinct threshold varying from t to 1 + t(t+1)

2 . 
The number of shares for each shareholder is 2 + t(t−1)

2
using this approach; but the number of shares for each 
shareholder is t using our proposed dynamic threshold SS.

4.3. Performance

Each share, si(y), is a univariate polynomial with de-
gree t − 1 and the shareholder needs to store t coeffi-
cients of the polynomial. Thus, the memory storage of 
each shareholder is t log2 p bits, where p is the modulus. 
Horner’s rule [37] can be used to evaluate polynomials. In 
the following discussion, we show the cost for computing 
w vi = svi (0) 

∏ j
l=1,l �=i

−xvl
xvi −xvl

+ bsvi (1) 
∏ j

l=1,l �=i
1−xvl

xvi −xvl
mod p, 

in the secret reconstruction. From Horner’s rule, evaluating 
a polynomial of degree t − 1 needs t − 1 multiplications 
and t additions. Since each multiplication takes more time 
than each addition, the performance is only addressed 
to the number of multiplication needed. The computa-
tional cost in Step 1 to compute w vi consists of only the 
cost of evaluating one polynomial. In addition, the com-
putational cost in Step 2 to compute, s = ∑ j

i=1 w vi mod p, 
needs only additions. Overall, the computational cost to re-
construct the secret, each shareholder needs to evaluate 
t + 1 + 2( j − 2) multiplications.

The proposed scheme needs to employ additional key 
establishment algorithm to establish secret communication 
keys to protect w vi in order to prevent non-shareholders 
obtain the secret. In the next section, we extend this 
scheme to use same shares to establish pairwise keys be-
tween every two users. Shareholder can use these pairwise 
keys to protect w vi .

5. An efficient (t, n) SS based on a bivariate polynomial

In this section, we propose a (t, n) SS in which shares 
of shareholders cannot only be used to reconstruct a secret 
but also to protect the secrecy of the recovered secret. The 
proposed scheme keeps the recovered secret to be known 
only to shareholders but not to non-shareholders. The pro-
posed scheme is unconditionally secure.

5.1. Algorithm

Share generation:
The dealer follows the same procedures as described in 

Section 4.1 to generate shares of shareholders.

Secret reconstruction:
Assume j (i.e., t < j ≤ 1 + t(t+1)

2 ) shareholders, for ex-
ample {U v1 , U v2 , . . . , U v j }, want to recover the secret, s.

Step 1.
Each shareholder U vi uses his share, svi (y), to compute

w vi = svi (0)

j∏

l=1,l �=i

−xvl

xvi − xvl

+ bsvi (1)

j∏

l=1,l �=i

1 − xvl

xvi − xvl

mod p.w vi

is revealed to other shareholders.

Step 2.
Each shareholder U vi uses his share, svi (y), to com-
pute pairwise shared keys, ki, j = svi (xv j ) = F (xvi , xv j ), 
j = 1, 2, . . . , u, j �= i, where ki, j is the secret key shared 
between shareholders, U vi and U v j .

Step 3.
Each shareholder U vi sends w vi secretly to other share-
holders as ci, j = Eki, j (w vi ), j = 1, 2, . . . , u, j �= i, where 
Eki, j (w vi ) is the encryption of w vi using the key ki, j .

Step 4.
After receiving ciphertext, c j,i , j = 1, 2, . . . , u, j �= i, from 
other shareholders, shareholder U vi computes w v j =
Dki, j (c j,i), j = 1, 2, . . . , u, j �= i, where Dki, j (c j,i) is the de-
cryption of c j,i using the key ki, j .

Step 5.
After recovering, w vi , i = 1, 2, . . . , j, each shareholder 
computes s = ∑ j

i=1 w vi mod p.

5.2. Security

In the secret reconstruction, in Step 1, each released 
value,

w vi = svi (0)

j∏

l=1,l �=i

−xvl

xvi − xvl

+ bsvi (1)

j∏ 1 − xvl

xvi − xvl

mod p,
l=1,l �=i
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is an output of a valid share, si(y), of shareholder U vi . 
In addition, in Step 2, each pairwise key, ki, j = svi (xv j ) =
F (xvi , xv j ), is also an output of a valid share, si(y), of 
shareholder U vi . Since non-shareholders do not own any 
valid share, so non-shareholders cannot recover the secret 
from the exchange information, ci, j = Eki, j (w vi ), in Step 3. 
In other words, this proposed scheme is able to protect the 
secret in the secret reconstruction. The security of the pro-
posed scheme is unconditionally secure.

6. Application to the threshold cryptography

In Shamir’s SS, the shares can be used to reconstruct 
only one secret. This is because the secret and shares are 
known to all participated shareholders in the secret recon-
struction. Thus, the efficiency of the SS is very low. The 
threshold cryptography was first introduced by Desmedt 
in 1987 [38]. Threshold cryptography is the study of ef-
ficient multiparty computation protocols for cryptographic 
functions (e.g. signing or decrypting) in which each group 
member has a share of the private key of the group and 
multiple members jointly compute an output of the cryp-
tographic function. Shamir’s (t, n) SS has been used in con-
junction with public-key algorithms, such as RSA scheme 
[39] or ElGamal scheme [40], in most existing threshold 
algorithms. For example, [41,42] are based on the ElGamal 
scheme, [43–46] are based on the RSA, [47,48] are based 
on the Elliptic Curve public-key scheme and [49,50] are 
based on Pairing. Since shares are protected by public-key 
algorithms in threshold cryptography, shares can be reused 
to compute multiple functions.

In the processing to compute any threshold function, 
values computed by group members need to be protected 
by communication keys; otherwise, non-members can also 
obtain the output. For example, in a threshold decryption, 
if computed values of group members are not protected, 
non-members can also recover the plaintext. Most existing 
threshold algorithms use Shamir’s (t, n) SS as the building 
block to generate shares of group members. Shares gener-
ated by Shamir’s SS can only be used to recover the secret. 
Thus, additional key establishment protocol is needed to 
generate communication keys for group members. Adding 
a key establishment protocol in the threshold application 
can slow down the process significantly. As we have shown 
in previous sections, shares generated by a bivariate poly-
nomial can be used to establish pairwise keys between 
any pair of group members. Furthermore, shares can also 
be used to reconstruct the secret but having a dynamic 
threshold. By extending our proposed SSs to threshold al-
gorithms can improve their efficiency significantly.

In a threshold algorithm, the group manager (GM) is re-
sponsible to select a pair of public and private keys of the 
group and to register group members initially. The GM fol-
lows our proposed SS in Section 5 to select the private key 
of the group as the secret and generate shares of group 
members. The share of each group member is a univariate 
polynomial with degree t − 1. In the process to compute 
the threshold function, each participated group member 
uses his/her share to compute an individual output of the 
function and pairwise keys shared with other group mem-
bers. Then, the individual output is encrypted using the 
pairwise key shared with every other group member sepa-
rately. The ciphertext is sent to every participated member. 
Similarly, each received ciphertext needs to be decrypted 
using the pairwise key shared with every other group 
member to recover each individual output. By combining 
all individual outputs of participated members can obtain 
an output of the threshold function. Since non-members 
do not have any share generated by the GM, the output of 
threshold function is prevented from non-members.

7. Conclusion

Shamir’s SS is one of the most popular cryptographic 
tools. However, there are many security issues related to 
the secret reconstruction process. In this paper, we pay 
special attention to address how to reconstruct the se-
cret when there are more than t participants in the se-
cret reconstruction. We propose a dynamic threshold SS 
in which shares generated by the dealer initially can be 
used to reconstruct a secret but having a larger thresh-
old (i.e., the threshold is determined by the number of 
participated shareholders in the secret reconstruction). Our 
proposed schemes are dealer-free and non-interactive. The 
dynamic threshold SS can be extended to enable shares of 
shareholders to establish pairwise keys used to protect the 
recovered secret. These proposed SSs can also be applied 
to the threshold cryptography to develop efficient thresh-
old algorithms.
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