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Abstract

In a (t, n) secret sharing scheme (SS), the secret is shared
among n shareholders in such a way that (a) with t or
more than t shares can recover the secret, and (b) with
fewer than t shares cannot obtain the secret. The thresh-
old signature scheme is an application that extends the
SS to a digital signature scheme. In a threshold signature
scheme, any t or more than t group members can repre-
sent the group to generate a group signature; but fewer
than t group members cannot generate a group signature.
So far, most threshold signature schemes are based on the
linear polynomial. In other words, these threshold signa-
ture schemes need to overcome the problem of polyno-
mial interpolation. In this paper, we propose a threshold
signature scheme based on the Chinese Remainder The-
orem (CRT). We describe how to set up the system by a
trusted group manager initially and generate pairs of pub-
lic and private keys for group members. Since our pro-
posed scheme is based on the CRT, there is no polynomial
interpolation. The security of our proposed threshold sig-
nature scheme is based on the difficulty of solving the
discrete logarithm problem.
Keywords: Chinese remainder theorem, polynomial inter-
polation, multisignature, threshold signature

1 Introduction

Secret Sharing Schemes (SSs) were originally introduced
by both Blakley [3] and Shamir [27] independently in 1979
as a solution for safeguarding cryptographic keys and have
been studied extensively in the literature. SS has become
one of the most basic tools in cryptographic research. In
Shamir’s SS, a secret s is divided into n shares by a dealer
and shares are sent to shareholders secretly. The secret
s is shared among n shareholders in such a way that (a)
with t or more than t shares can recover the secret, and

(b) with fewer than t shares cannot obtain the secret.
Shamir’s (t, n) SS is based on a linear polynomial and is
unconditionally secure. There are other types of threshold
SSs, for example, Blakley’s scheme [3] is based on the
geometry, Mignotte’s scheme [22] and Asmuth-Bloom’s
scheme [1] are based on the Chinese remainder theorem
(CRT).

In an SS, the shares can be used for reconstructing
the secret for only one time. This is because, in the se-
cret reconstruction, the secret and shares are known to all
participated shareholders. Therefore, the efficiency of the
SS is very low. However, in a digital signature algorithm,
the secret is the private key used for generating a digital
signature. Since most digital signature schemes are based
on some computation assumptions, the private key can
be reused for generating multiple signatures. If the SS is
extended to protect the private key of a digital signature
scheme, the efficiency of the SS can be improved since
the private key of a digital signature is protected based
on some computational assumptions.

The threshold cryptography was first introduced by
Desmedt in 1987 [5]. Desmedt and Frankel [6] have also
proposed the first non-robust threshold signature scheme
based on the ElGamal’s signature [8]. In a threshold sig-
nature scheme, a group manager (GM) is responsible for
selecting a pair of private and public keys for the group.
The GM divides the group private key into multiple shares
(i.e., private keys of members) and gives each share to
each member secretly. Later, any t or more than t mem-
bers can work together to generate a group signature; but,
fewer than t members cannot generate a group signature.
It is a natural generalization to use the SS in the design
of a threshold signature scheme. So far, most threshold
signature schemes are based on the linear polynomial. In
Shamir’s SS based on the linear polynomial, the poly-
nomial interpolation needs to be performed in a field Zp

where p is a prime. Harn [13] proposed a robust threshold
signature scheme based on a variation of ElGamal signa-
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ture scheme. In Harn’s scheme, a special modulus p is
selected by the GM where p − 1 contains a small prime
factor q (i.e., q|p−1 ). A generator g with order q is used
to compute all modular exponentiations. Under this ar-
rangement, the polynomial interpolation of Shamir’s SS
can be performed in Zq. Gennaro et al. [10] have proposed
a robust threshold DSS [23] signature.

Desmedt and Frankel [6] have mentioned the difficulty
of designing threshold signature schemes based on the
RSA signature scheme [25]. The problem is caused by
the fact that the polynomial interpolation is over the ring
Zφ(n) where n is the RSA modulus and φ(n) is the Eu-
ler toting function and is not a prime. Desmedt and
Frankel [7] have proposed a non-robust threshold RSA
signature. Later, De Santis et al. [26] proposed a variation
of the Desmedt and Frankel’s scheme [7]; but trades inter-
action for large share size. Both schemes [7, 26] avoid the
problem of polynomial interpolation over Zφ(n) by work-
ing instead with over Zφ(n)bxc/Φq(X) where Φq(X) is the
qth cyclotomic polynomial and q is a prime. But, this de-
sign leads to a much more complicate scheme. Gennaro et
al. [11] and Shoup [29] have proposed techniques to make
threshold RSA signature scheme robust. There are other
types of threshold signature schemes, including Elliptic
curve-based [28] and Pairing-based [9] threshold signa-
ture schemes in the literature. Readers can refer to [14]
for more information on the development of threshold sig-
nature schemes.

In this paper, we propose an approach to avoid the
problem of polynomial interpolation. We adopt the SS
based on the CRT in the design of a threshold signa-
ture. Most research papers in the subject of the SS are
based on the linear polynomial; but only a few papers are
based on the CRT. Polynomial and CRT are two differ-
ent mathematical tools which can be used to implement
a SS scheme. Both tools share many interesting prop-
erties. For example, the secret sharing homomorphism
proposed by Benaloh [2] implies that the additive sum of
shares generated by polynomials/CRTs is a share of addi-
tive sum of polynomials/CRTs. On the other hand, both
tools are different in many aspects. For example, there
is no polynomial interpolation in using CRT. Kaya and
Selcuk [16] proposed the first CRT-based threshold de-
cryptions. Later, they proposed a CRT-based threshold
DSS signature [17]. But, their scheme needs 2t shares
to generate a valid threshold signature and the signa-
ture generation is very complicate. In 2012, Guo and
Chang [12] proposed a weighted threshold signature based
on based on the work of Iftene [15], Kaya and Selcuk [16],
and generalized Chinese remainder theorem [20]. Their
scheme utilizes the cryptographic techniques of extended
Asmuth-Bloom sequences [1] based on GCRT and the
RSA threshold signature scheme [18]. However, Guo and
Chang’s scheme is not provable security because that RSA
signature is not provable security [21]. In our proposed
CRT-based threshold signature, it needs only t or more
than t users to jointly generate the signature. Our scheme
utilizes the cryptographic techniques of Mignotte’s (t, n)

threshold SS [22] and Harn’s multisignature signature
scheme [13]. The signature generation is almost the same
as the polynomial-based threshold signatures. We de-
scribe how to set up the system by a trusted GM initially
and generate pairs of public and private keys for group
members. Since our proposed scheme is based on the
CRT, there is no polynomial interpolation. The security
of our proposed threshold signature scheme is based on
the difficulty of solving the discrete logarithm problem.

The rest of this paper is organized as follows. In the
next section, we introduce some preliminaries that include
CRT, Mignotte’s (t, n) threshold SS and a modified sig-
nature scheme and multisignature scheme used in our de-
sign. In Section 3, we introduce the model of our pro-
posed scheme including entities, informal model and se-
curity properties. We propose a novel threshold signature
scheme based on the CRT in Section 4. Security analysis
and comparisons are included in Section 5. We conclude
in Section 6.

2 Preliminaries

In this section, we provide fundamental background used
in our design, including the CRT, the Mignotte’s thresh-
old SS [22] and Harn’s multisignature scheme [13].

2.1 Chinese Remainder Theorem [4]

Given following system of equations as
x = s1 mod p1;
x = s2 mod p2;

...
x = st mod pt,

there is one unique solution as x =
∑t

i=1(N/pi)·yi ·si mod
N where (N/pi) ·yi mod pi = 1, and N = p1 ·p2 · . . . ·pt, if
all moduli are pairwise coprime (i.e., gcd(pi, pj) = 1, for
every i 6= j.)

2.2 Review of Mignotte’s Threshold SS

We review Mignotte’s threshold secret sharing scheme [22]
as follows.

Share generation: A sequence of pairwise coprime pos-
itive integers, p1 < p2 < . . . < pn, where pi is
the public information associated with each share-
holder, Ui. These public integers need to satisfy that
pn−t+2 · pn−t+3 · . . . · pn < p1 · p2 · . . . · pt.

For this given sequence, the dealer chooses the secret
s in the range,Rt = {s∈Z|pn−t+2 · pn−t+3 · . . . · pn <
s < p1 · p2 · . . . · pt}. We call this range, the t-
threshold range. Share for the shareholder, Ui,
is generated as si = s mod pi, i = 1, 2, . . . , n. si is
sent to shareholder, Ui secretly.

Remark 1. The numbers in the t-threshold range, Rt,
are integers upper bounded by p1 · p2 · . . . · pt, which is
the smallest product of any t moduli, and lower bounded
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by pn−t+2 · pn−t+3 · . . . · pn, which is the largest product
of any t − 1 moduli. The secret, s, selected in this range
can ensure that (a) the secret can be recovered with any
t or more than t shares (i.e., the product of their moduli
must be either equal to or larger than p1 · p2 · . . . · pt), and
(b) the secret cannot be obtained with fewer than t shares
(i.e., the product of their moduli must be either equal to or
smaller than pn−t+2·pn−t+3·. . .·pn). Thus, the t-threshold
range determines the threshold of a (t, n) threshold SS.

Secret reconstruction: Given t distinct shares, for ex-
ample, {si1 , si2 , · · · , sit

}, the secret s can be recon-
structed by solving the following system of equations
as

x = si1 mod pi1 ;
x = si2 mod pi2 ;

...
x = sit mod pit .

Using the standard CRT, a unique solution x is given
as x =

∑t
r=1(N/pir

) · yir
· sir

mod N , where N =
pi1 · pi2 · . . . · pit and (N/pir ) · yir mod pir = 1.

2.3 Review of Harn’s Multisignature Sig-
nature Scheme

An efficient digital multisignature signature is proposed
in [13]. This multisignature signature allows multiple
signers to work together to generate a digital multisig-
nature corresponding to a message. The length of mul-
tisignature signature is equivalent to the length of each
individual signature.

In this section, we first introduce the modified ElGa-
mal signature scheme used to construct the multisignature
signature. We present a formal security proof of this mod-
ified scheme. The original ElGamal signature scheme [8]
was proposed in 1985; but the security was never proved
equivalent to the discrete logarithm problem. In 1996,
Pointcheval and Stern [24] used the Forking lemma to
prove the security of a slight variation of the original El-
Gamal signature scheme.

The modified ElGamal signature scheme used to
construct a multisignature consists of 3 steps as follows:

• Let p be a large prime and g be a generator of Zp,
then the public key is y = gx mod p and the private
key is x;

• The signer picks k∈Zp−1 randomly and a crypto-
graphic hash function h, the signature of message
m is (r, s) where r = gk mod p and s = x·h(m, r) −
k·r mod p− 1;

• The verification of the signature checks the equation
yh(m,r) = rr·gs mod p.

We assume that hash function h behaves like a random
oracle, and hence we follow the established cryptographic

techniques, i.e., the Oracle Replay Attack and the Fork-
ing Lemma as proposed in [24], to prove the security of
modified ElGamal signature scheme.

Theorem 1. The modified ElGamal signature scheme
is secure under the random oracle model against known-
message attack and against adaptively chosen message at-
tack.

Proof. For a formal security proof, the hash function
h = h(m, r) in modified signature scheme will be treated
as a random oracle. We use the method of reduction-
ist proof to prove this Theorem. Suppose that there is
an adversary A who can break this scheme, then we can
construct an algorithm B that can solve the discrete log-
arithm problem with non-negligible probability in prob-
abilistic polynomial time. It is to say that given (p, g, y)
we can design an algorithm B to output x which satisfies
y = gx mod p. The algorithm B is described as follows.

Algorithm B sends (p, g, y) to an adversary A, and A
requests some queries.

h-query: B maintains a list L1 = (m, r, h) and initializes
it to empty. If A provides a pair (m, r) for h-query, B
checks if (m, r) has it in the list L1. If it is, returns
the corresponding h; otherwise, B picks a random
h∈Zp−1 as a returned value, and adds (m, r, h) into
list L1.

Signature query: B maintains a list L2 = (m, r, h, s)
and initializes it to empty. If A provides a message m
for Signature query, B checks if m is in the list L2. If
it is, returns the corresponding (r, s) as m’s signature;
otherwise, B picks random integers u, v∈Zp−1, and
computes r = gu·yv mod p, h = v·gu·yv mod p − 1,
and s = −u·gu·yv mod p − 1, and checks whether
(m, r) is in the list L1. If it is, returns failure; else,
returns the signature (r, s) and adds (m, r, h, s) into
the list L2, adds (m, r, h) into the list L1. Note that
the probability of failure is less than the number of
times of requested h-queries and Signature queries
divided by the length of hash value times two.

Adversary A outputs a valid signature (r1, s1) of the
message, m1, where m1 is not requested on Signature
query.

Using the Oracle Replay Attack and the Forking
Lemma as proposed in [24], we can obtain another valid
signature (r1, s

′
1) of message, m1. In detail, B resets A

two times. In the first time, B records all the transcripts
that interacted with A, and in the second time, B does the
same thing as the first time except h-query. For instance,
B picks a random numbers h1 as the returned value for the
first time and a different random numbers h′1 for the sec-
ond time when A request h-query on (m1, r1). After two
rounds of interacting with B, A outputs two valid signa-
tures, (r1, s1) and (r1, s

′
1) of the message m1 with different

hash values, h1 and h′1. Then, A sends (r1, s1) and (r1, s
′
1)
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to B. because both (r1, s1) and (r1, s
′
1) are m1’s valid sig-

nature. So, B obtains yh1 = r1
r1 ·gs1 mod p and yh′1 =

r1
r1 ·gs′1 mod p. Thus, we have yh′1−h1 = gs′1−s1 mod p.

If gcd(h′1 − h1, p − 1) = 1, it is easy to compute the dis-
crete logarithm of y as x = (h′1 − h1)

−1 mod p − 1. This
result contradicts to the discrete logarithm assumption.
Note that the probability of gcd(h′1−h1, p−1) = 1, is big
enough and can reach 1/2 if we let p = 2q + 1 for some
prime q.

In the following, we assume that there are two sign-
ers, A and B, with their private and public keys, (xA, yA)
and (xB , yB) respectively, where yA = gxA mod p and
yB = gxB mod p. To digitally generate a valid multisig-
nature (r, s), by A and B, according to [13], they com-
pute rA = gkA mod p and rB = gkB mod p, where kA and
kB are random secrets selected by A and B, respectively
from Zp−1. rA and rB are exchanged with each other.
Then, they compute r = rA·rB mod p. With knowledge
of their private keys, they can solve sA and sB satisfy-
ing xA·h(m, r) = sA + kA·r mod p − 1 and xB ·h(m, r) =
sB + kB ·r mod p− 1, respectively. The multisignature of
a message m is (r, s), where s = sA + sB mod p− 1. The
multisignature can be verified by a verifier by checking
whether yh(m,r) = rr·gs mod p. In the next section, we
propose a threshold signature scheme based on this mul-
tisignature scheme to allow any t or more than t members
to represent a group to generate a threshold signature.

There is a threshold signature scheme in [13] which
integrates both Shamir’s (t, n) SS and Harn’s multisigna-
ture scheme. In fact, most existing threshold signature
schemes are based on the linear polynomial. In the next
section, we propose a novel approach to design a thresh-
old signature scheme based on the CRT. We believe that
our design opens a new direction to enable CRT-based SS
to be integrated into other cryptographic functions.

3 Models of Proposed Threshold
Signature Scheme

3.1 Entities

In our proposed threshold scheme, there is a GM to regis-
ter n members initially. The GM needs to select a pair of
private and public keys of the group and divide the group
private key into n shares. Each share will be sent to each
member secretly. Later, any t or more than t members can
work together to generate a group signature; but, fewer
than t members cannot generate a group signature. Any
verifier can use the group public key to verify the group
signature.

3.2 Informal Model of Our Proposed
Scheme

We assume that the GM selects a pair of private and pub-
lic keys, (x, y), of the group and divides the group private
key into n shares, xi, i = 1, 2, . . ., n, for members in the

group, U = {U1, U2, . . ., Un}. Each member, Ui, will re-
ceive a share (i.e., private key), xi, from the GM initially
as his/her private key. In other words, the GM uses the
Mignotte’s (t, n) threshold SS to compute private keys,
(x1, x2, . . ., xn) for group members initially. The thresh-
old signature generation, TSS, allows any t or more than t
members to generate a group signature. The group signa-
ture can be verified according to the signature verification,
VS, using the group public key. i.e.,

TSS: (m,xi1 , xi2 , . . ., xit
)→a group signature; where

∀Uir
∈U ;

V S: (m, a group signature, group public key)→yes/no.

3.3 Properties

We propose a threshold signature scheme with the follow-
ing properties:

Protection of private keys. Our scheme protects the
secrecy of private keys of the group and members;
otherwise, private keys can be used to generate only
one group signature.

Unforgibility of group signature. Our scheme en-
sures that (a) any t or more than t members can work
together to generate a valid group signature, and (b)
fewer than t members cannot generate a valid group
signature.

Fixed length of threshold signature. Our scheme
ensures that the length of a threshold signature is
fixed (i.e., not depending on the number of signers).

Efficiency of verification. The verification of a group
signature is based on the group public key.

4 Proposed Threshold Signature
Scheme

4.1 Outline of Our Design

In our proposed scheme, there is a trusted GM who is
responsible for setting up the system initially. The GM
needs to select public parameters and a pair of private
and public keys of the group. The GM needs to regis-
ter all members initially and follow the Mignotte’s SS to
divide the group private key into shares (private keys of
members) and send a private key, xi, for each member.

In the threshold signature generation, each group mem-
ber needs to use his/her private key to generate an in-
dividual signature. The individual signature needs to be
sent to a signature combiner. The signature combiner can
be any participated member who is responsible to collect
all individual signatures and produce a group signature.
The signature combiner needs to verify each individual
signature and then combine all individual signatures into
a group signature.
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4.2 Proposed Threshold Signature
Scheme

Public and private key generation: The GM selects
a sequence of pairwise coprime positive integers, p1 <
p2 < . . . < pn, where pi is the public information
associated with member, Ui. These public integers
need to satisfy that pn−t+2·pn−t+3·. . .·pn < p1·p2·. . .·
pt. In addition, the GM selects a prime modulus, p,
where integers in the set, {p1, p2, . . . , pn}, are divisors
of p − 1 (i.e., p1, p2, . . . , pn|p − 1), a generator, g, of
the subgroup of order N = p1 · p2 · . . . · pn such that
1 < g < p.

For this given sequence, the GM chooses the private
key x of the group as an integer in the range Rt =
{x∈Z|pn−t+2 · pn−t+3 · . . . · pn < x < p1 · p2 · . . . · pt}.
The public key of the group is y = gx mod p. Private
key of the member, Ui, is generated as xi = x mod
pi. The public key of the member, Ui, is computed
as yi = gxi mod p. xi is sent to each member, Ui,
secretly.

Remark 2. Following steps are used to generate the gen-
erator g.

1) e = (p− 1)/N ;

2) Set α be any integer satisfying 1 < α < p − 1, such
that α differs from any value previously tried;

3) g = αe mod p.;

4) If (g = 1), then go to step 2; otherwise return g.

The following lemma proves the order of the generator.

Lemma 1. For any nonnegative integer b if g =
α(p−1)/N mod p, then gb = gb mod N mod p.

Proof. From the Fermat theorem, since gcd(α, p) = 1,
we have αp−1 mod p = 1. Hence, for any nonnegative
integer c, we have gcN mod p = (α(p−1)/N )cN mod p ==
(αp−1)c mod p = 1. Thus, any nonnegative integer b can
be represented as b = dN + z, where 0 < d, z < N .
Then,gb mod p = gdN+z mod p == gz mod p. Since z =
b mod N . we have proven this lemma.

Threshold signature generation:
The proposed scheme allows any t or more than t
members to represent the group to generate a group
signature. Assume that members in the subset U
= {Ui1 , Ui2 , · · · , Uit} want to generate a group
signature for a message m. There are two parts
involved in this phase.

Individual signature generation and verification.
Every member Uiv randomly selects an integer
kv∈ZN and computes rv = gkv mod p. rv is made
available to all other members in the subset U .
After receiving all values, rv, v = 1, 2, . . ., t, every
member Uiv computes r = (r1·r2·. . .·rt)N\N ′

mod p,

where N = (p1·p2·. . .·pn) and N ′ = (pi1 ·pi2 ·. . .·pit).
Then, every member Uiv

uses his/her private key,
xiv

, to generate a partial signature of the message
m as sv = (N ′/piv )·wiv ·xiv ·h(m, r) − kv·r mod N ′,
where (N ′/piv

)·wiv
mod piv

= 1. The individual
signature, (rv, sv) of member Uiv

is sent to the
signature combiner.

Once receiving the individual signature, (rv, sv),
from member Uiv , the signature combiner uses the
public key, yiv

of member Uiv
to verify whether

y
(N/piv )·wiv ·h(m,r)
iv

?
= g(N/N ′)·sv · r(N/N ′)·r

v mod p. If it is,
the individual signature has been successfully verified.

Theorem 2. If y
(N/piv )·wiv ·h(m,r)
iv

= g(N/N ′)·sv ·
r
(N/N ′)·r
v mod p, the individual signature has been verified

successfully.

Proof. With the knowledge of the secrets, xiv and kv,
member Uiv

is able to compute sv = (N ′/piv
)·wiv

·xiv
·h(

m, r)− kv·r mod N ′, where N ′ = pi1 ·pi2 ·. . .·pit . Since N ′

is a factor of N (i.e., N ′|N), we have g(N/N ′) is a generator
of the subgroup of order N ′. Hence, we can get

y
(N/piv )·wiv ·h(m,r)
iv

= (g(N/N ′))(N
′/piv )·xiv ·wiv ·h(m,r)

= (g(N/N ′))sv · (g(N/N ′))kv·r

= g(N/N ′)·sv · r(N/N ′)·r
v mod p.

Threshold signature generation. After all individ-
ual signatures, (rv, sv), v = 1, 2, . . ., t, having
been verified successfully, the threshold signature,
(N ′, r, s) of the message m is computed as s =
(N/N ′)·(∑t

v=1 sv mod N ′).

Threshold signature verification: Using the group
public key, y, the threshold signature, (N ′, r, s) of the
message m can be verified by first checking whether
N is divisible by N ′ and then checking whether
y(N/N ′)·h(m,r) ?

= gs·rr mod p. If it is, threshold sig-
nature has been successfully verified.

Theorem 3. If N is divisible by N ′, and y(N/N ′)·h(m,r) =
gs·rr mod p, the threshold signature has been verified suc-
cessfully.

Proof. It is obvious that since N = p1·p2·. . .·pn and
N ′ = pi1 ·pi2 ·. . .·pit . N is divisible by N ′. In ad-
dition, since every individual signature, (rv, sv) satis-
fies sv = (N ′/piv )·wiv ·xiv ·h(m, r) − kv·r mod N ′, the
threshold signature s is s = (N/N ′)·(∑t

v=1 sv mod
N ′)= (N/N ′)·(∑t

v=1(N
′/piv )·wiv ·xiv ·h(m, r) − kv·r mod

N ′). According to the secret reconstruction in Mignotte’s
SS, we have

x =
t∑

v=1

(N ′/piv )·wiv ·xiv mod N ′.
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Table 1: Comparison with other schemes

Scheme
Kaya and Selcuk’s
scheme [17]

Guo and Chang’s
scheme [12] Our scheme

Players for generating
(t, n) signature 2t t t

Whether or not
provable security Yes No Yes

Which signature
scheme is based on DSS RSA Harn’s multisignature

signature scheme [13]
Which secret sharing
scheme is based on

Asmuth and Bloom’s
threshold SS [1] Weighted threshold SS [15] Mignotte’s threshold SS [22]

Thus, we have

s = (N/N ′)·(x·h(m, r)−
t∑

v=1

kv·r mod N ′).

Hence, we can get

y(N/N ′)·h(m,r) = gs·(g(N/N ′))(r·
∑t

v=1 kv)modN ′
mod p

= gs·(
t∏

v=1

rv)(N/N ′)·r mod p

= gs·rr mod p.

5 Security Analysis and Compar-
isons

In the following discussion, we analyze the properties de-
scribed in Section 3.3 and compare our scheme with some
other threshold schemes [12, 17].

Protection of private keys. Every member Uiv needs
to use his/her private key, xiv to generate an
individual signature of the message m as sv =
(N ′/piv )·wiv ·xiv ·h(m, r)− kv·r mod N ′. The private
key, xiv , cannot be recovered by other members since
there is one more secret, kiv , known only to the mem-
ber, Uiv .

Unforgibility of group signature. The private key, x,
of the group is protected by the SS. It needs t or
more than t members to recover the group private
key. With fewer than t private keys cannot recover
the group private key and therefore cannot generate
a valid group signature.

Similar to [19, 30], we suppose that there is an adver-
sary A who can corrupt at most t−1 members at the
beginning of the signature. The adversary A adap-
tively chooses messages m1, m2, . . ., mk for signature
query, then the adversary A attempts to forge a valid
signature for new message m. If there is no such ad-
versary can successfully forge a valid signature for m

with non-negligible probability, we say the threshold
signature scheme unforgibility.

Theorem 4. Our proposed threshold signature scheme
is secure under the random oracle model against known-
message attack and against adaptively chosen message at-
tack.

Proof. Suppose an adversary A with t−1 corrupted mem-
bers can break the proposed threshold signature scheme.
Without loss of generality, we assume that the corrupted
members are U1, U2, . . ., Ut−1. It is to say that the adver-
sary A can forges a signature (N ′, r, s) of m which satis-
fies y(N/N ′)·h(m,r) = rr·gs mod p. In fact, the adversary
A cannot obtain the private key x from t − 1 corrupted
members because the private key is protected by the SS,
and therefore cannot generate a signature (N ′, r, s) of
m which satisfies y(N/N ′)·h(m,r) = rr·gs mod p without
knowing private key x according to Theorem 1. Thus,
the adversary A must use the t − 1 private keys of cor-
rupted members to compute the forged signature. In
other words, the adversary generates the t− 1 individual
signatures (rv, sv) of m satisfying y

(N ′/piv )·wiv ·h(m,r)
iv

=

g(N/N ′)·sv ·r(N/N ′)·r
v mod p, for v = 1, 2, . . ., t − 1. Then,

the adversary computes st = s − ∑t−1
v=1 sv mod N ′

and rt = r(N/N ′)−1modN ′ ·(r1·r2·. . .·rt−1)−1 mod p with-
out knowing the private key xt. Obviously, (rt, st) sat-
isfies y

(N ′/pt)·wt·h(m,r)
t = g(N/N ′)·st ·r(N/N ′)·r

t mod p; how-
ever, in a similar approach as used in proving Theorem 1,
it is impossible since this result contradicts to the discrete
logarithm assumption.

Fixed length of threshold signature. The length of
the threshold signature is identical to the length of
an individual signature.

Efficiency of verification. Any verifier does not need
to know the signers of a group signature. The group
signature is verified using the public key of the group.

Next, we compare our scheme with some other thresh-
old schemes [12, 17] which are based on the Chinese Re-
mainder Theorem too. The result of comparisons is de-
scribed in Table 1. Since RSA signature is not provable
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security [21], the scheme [12] is not provable security be-
cause that the verification of scheme [12] is the same as
RSA signature. Furthermore, we can use the existing
message-signature pairs (M1, s1) and (M2, s2) to forge a
new message-signature pairs (M1 ·M2, s1 · s2) [21] easily.
Therefore, our scheme is more secure than scheme [12].
As for scheme [17], it needs 2t players to generate a (t, n)
threshold signature. Therefore, our scheme is more effi-
cient than scheme [17] because our scheme needs t players
to generate a (t, n) threshold signature.

6 Conclusions

A threshold signature scheme is a useful tool to support
the group-oriented application. The threshold signature
enables t or more than t members to represent a group
to generate a group signature; but, fewer than t group
members cannot generate a group signature. Most exist-
ing threshold signature schemes are based on the linear
polynomial. We propose a threshold signature scheme
based on the CRT. By selecting parameters properly, the
CRT-based SS can be applied in designing a threshold sig-
nature scheme. We believe that our design opens a new
direction to enable CRT-based SS to be integrated into
other cryptographic functions.
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