
IEEE SENSORS JOURNAL, VOL. 16, NO. 11, JUNE 1, 2016 4515

Efficient Group Key Transfer Protocol for WSNs
Ching-Fang Hsu, Lein Harn, Tingting He, and Maoyuan Zhang

Abstract— Special designs are needed for cryptographic
schemes in wireless sensor networks (WSNs). This is because
sensor nodes are limited in memory storage and computational
power. The existing group key transfer protocols for WSNs using
classical secret sharing require that a t-degree interpolating
polynomial be computed in order to encrypt and decrypt the
secret group key. This approach is too computationally intensive.
In this paper, we propose a new group key transfer protocol
using a linear secret sharing scheme and factoring assumption.
The proposed protocol can resist potential attacks and also
significantly reduce the computation complexity of the system
while maintaining low communication cost. Such a scheme is
desirable for secure group communications in WSNs, where
portable devices or sensors need to reduce their computation
as much as possible due to battery power limitations.

Index Terms— Group key transfer protocol, secret sharing,
LSSS based on Vandermonde matrix, wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been devel-
oped in wide range of data acquisitions in battle fields,

human body [1], [2], hazardous environments, etc. Most sensor
nodes are small, low-cost, and low-power devices [3]. Sensors
are randomly deployed without knowing their locations in
prior of the deployment. Since sensors are low-cost, limited
in both memory storage and computational power, it is a chal-
lenging research problem to develop cryptographic schemes
suitable for WSNs.

Most research papers in WSNs propose schemes to establish
pairwise keys for sensors. We can classify key establishment
schemes in WSNs into two types, the probabilistic schemes
and the deterministic schemes. The probabilistic scheme do
not guarantee connectivity in WSNs. Eschenauer and Gligor
proposed [4] the first Random Key Pre-distribution scheme.
In their scheme, each sensor is pre-loaded with a key ring
of k keys randomly selected from a large pool S of keys.
After the deployment, if two neighbors share at least one key,
they can establish a secure link in which the encryption key
is one of the common keys. Otherwise, they should determine

Manuscript received January 11, 2016; revised March 2, 2016; accepted
March 2, 2016. Date of publication March 4, 2016; date of current ver-
sion April 26, 2016. This work was supported in part by the Research
Funds of Central China Normal University within the Ministry of Education
under Grant CCNU15ZD003 and Grant CCNU15A02018 and in part by
the Major Project of National Social Science Fund under Grant 12&2D223.
The associate editor coordinating the review of this paper and approving
it for publication was Prof. Subhas C. Mukhopadhyay. (Corresponding
author: Ching-Fang Hsu.)

C.-F. Hsu, T. He, and M. Zhang are with the Computer School, Central
China Normal University, Wuhan 430079, China (e-mail: cherryjingfang@
gmail.com; tthe@mail.ccnu.edu.cn; zhangmyccnu@126.com).

L. Harn is with the Department of Computer Science Electrical Engineering,
University of Missouri–Kansas City, Kansas City, MO 64110 USA (e-mail:
harnl@umkc.edu).

Digital Object Identifier 10.1109/JSEN.2016.2538292

a secure path which is composed by successive secure links.
The values of the key ring size k and the key pool size |S|
are chosen in such a way that the intersection of two key
rings is not empty with a high probability. However, if the
sensors are progressively corrupted, the attacker may discover
a large part or the global key pool. Hence, a great number of
links will be compromised. Chan et al. [5] proposed a protocol
called Q-composite scheme that enhances the resilience of the
random key scheme. In this solution, two neighboring nodes
can establish a secure link only if they share at least Q keys.
This approach enhances the resilience against node capture
attacks because the attacker needs more overlap keys to break
a secure link. However, this approach degrades the network
secure connectivity coverage because neighboring nodes must
have at least Q common keys to establish a secure link.
Chan et al. [5] proposed a pairwise key pre-distribution scheme
to protect the resilience against node capture and each captured
node does not reveal any information about external links. The
main drawback of their scheme is the non-scalability because
the number of the stored keys depends linearly on the network
size. This property will cause implementation issue of the
scheme if the number of sensors in network is very large.
Du et al. [6] proposed an enhanced random scheme with
the node deployment knowledge. However, the application
of this scheme is restrictive if the deployment knowledge is
not possible. Rasheed and Mahapatra [7] proposes two key
pre-distribution schemes based on the polynomial pool-based
key pre-distribution scheme, the probabilistic generation key
pre-distribution scheme, and the Q-composite scheme. Their
schemes perform better in terms of network resilience to node
capture than existing schemes if used in WSNs with mobile
sinks. In 2013, Ruj et al. [8] proposed the first triple key
establishment in WSNs. Three sensors can establish unique
triple keys among them. Recently, Li and Xiong [9] proposed
a heterogeneous online and offline signcryption scheme to
secure communication between a sensor node and an Internet
host. Their scheme is based on the bilinear pairing Which is
a public-key-based approach.

The deterministic schemes do guarantee the connectivity
in WSNs. Most deterministic schemes are based on thresh-
old cryptography. Blom [10] proposed the first pairwise key
establishment scheme based on threshold cryptography and
Blundo et al. [11] further investigated the key establishment
using polynomials. In Blum’s scheme, every sensor node is
preloaded with coefficients of a symmetric bivariate poly-
nomial which is evaluated at one of its variables using its
identification. The symmetry property of a polynomial allows
every node to establish a pairwise key with every neigh-
bor node. For an adversary to compromise a communication

1558-1748 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4516 IEEE SENSORS JOURNAL, VOL. 16, NO. 11, JUNE 1, 2016

link between two non-compromised nodes, it must capture
at least a certain number of sensors (i.e., the threshold) to
reconstruct the bivariate polynomial from its shares stored in
the nodes and then break the system. For a polynomial of
degree t , the scheme provides unconditionally secure if no
more than t − 1 sensors collude. Liu et al. [12] developed a
general framework for pairwise key establishment based on
the polynomial-based key pre-distribution protocol [11] and
the probabilistic key distribution in [4] and [5]. Their scheme
provided a higher probability for non-compromised sensors
to establish secure communication links than that demon-
strated in previous schemes. Khan et al. [13] proposed a pre-
distribution scheme using a symmetric matrix and a generator
matrix of maximum rank distance to establish pairwise keys
for sensor nodes.

Secret sharing which was first introduced by both
Blakley [15] and Shamir [27] independently in 1979 has
been used to design group key transfer protocols for WSNs.
There are two different approaches using secret sharing: one
assumes a trusted offline server which is active only at
initialization [16], [17], [20], [28] and the other assumes an
online trusted server, called the key generation center, which
is always active. The first type of approach is also called a
key pre-distribution scheme. The main disadvantage of this
approach is to require every user to store a large number of
secrets. The second type of approach requires an online server
to be active [26], in which the trusted KGC broadcasts group
key information to all group members at once. This approach is
similar to the model used in the IEEE 802.11i standard [23].
In 1989, Laih et al. [26] proposed the first algorithm based
on this approach using any (t, n) secret sharing scheme to
distribute a group key to a group consisting of (t−1) members.
Later, there are some papers [18], [25], [28] following the
same concept to propose ways to distribute group messages
to multiple users. Until [21] proposed a novel group key
transfer protocol using (t, n) secret sharing that provided
confidentiality and authentication, where KGC and each group
member need to compute a t-degree interpolating polynomial
to encrypt and decrypt the secret group key.

Linear secret sharing schemes (LSSSs) can be seen as a
natural and useful generalization of threshold secret sharing
schemes (TSSSs) and have been received considerable atten-
tion [14], [22], [24], [29], [31]. In this paper, we extend group
key transfer protocols using secret sharing from TSSS to LSSS
and propose an efficient protocol using LSSS that can resist
potential attacks and also provide lower computational com-
plexity while maintaining low communication complexity for
secure group communications. The similar idea of using
LSSS based on Vandermonde Matrix to achieve privacy was
employed in [29] and [30]. The major difference between
their scheme and ours is that our scheme allows lower com-
putational complexity with factoring assumption, whereas the
other schemes needs additional computational complexity by
adding DH key agreement or ElGamal encryption algorithm.
Hence, the proposed scheme is desirable for wireless sensor
networks (WSNs), where portable devices or sensors need to
reduce their computations as much as possible due to battery
power limitations.

The rest of this paper is organized as follows: In the
next section, we provide some preliminaries. In Section 3,
we propose our group key transfer protocol. In Section 4,
we prove the LSSS used in the proposed protocol is perfect
and ideal. We analyze the security of our proposed protocol
in Section 5. Performance evaluation of the proposed scheme
is discussed in Section 6. We conclude in Section 7.

II. PRELIMINARIES

In this section we review some basic definitions concerning
factoring problem and linear secret sharing schemes.

A. Factoring Problem

Definition 1 (Factoring Problem): Let us choose two large
safe primes p and q (i.e., primes such that p′ = p−1

2 and
q ′ = q−1

2 are also primes) and compute m = pq . m is made
publicly known. Factoring problem is defined to compute
factors p and q such that m = pq .

Definition 2 (Factoring Assumption): It is computationally
intractable to solve the Factoring Problem.

B. Linear Secret Sharing Schemes

In a secret sharing scheme, a secret s is divided into n shares
and shared among a set of n shareholders by a mutually trusted
dealer in such a way that authorized subsets of shareholders
can reconstruct the secret but unauthorized subsets of share-
holders cannot determine the secret. If any unauthorized subset
of shareholders can not obtain any information about the
secret, then the scheme is called perfect. The set of authorized
subsets of shareholders is called access structure and the set
of unauthorized subsets of shareholders is called prohibited
structure.

Karchmer and Wigderson [24] introduced monotone span
programs (MSP) as linear models computing monotone
Boolean functions. Beimel [14] proved that devising a linear
secret sharing scheme (LSSS) for an access structure � is
equivalent to constructing an MSP computing the monotone
Boolean function f� which satisfies f�(�δA) = 1 if and only
if A ∈ �.

LSSS based on Vandermonde Matrix is introduced by
Hsu et al. in [22]. Suppose that V̄ = K n+1 is the (n + 1)
dimensional linear space over a finite field K . The character-
istic char(K) = p and p is a safe large prime. Given a basis

{e1, . . . , en+1} of V̄ with �ei = (0, . . . , 0,
i
1, 0, . . . , 0) ∈ K n+1

for 1 ≤ i ≤ n + 1, the mapping v : K → V̄ defined by
v(x) = ∑n+1

i=1 xi−1ei = (1, x, x2, . . . , xn) is determined. For
xi ∈ K (i ∈ {1, . . . , n + 1}), the Vandermonde Matrix Vn+1
can be represented as follows

Vn+1 =

⎛

⎜
⎜
⎝

v(x1)
v(x2)
. . .

v(xn+1)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

1

.

1 xn+1 x2
n+1 . . . xn

n+1

⎞

⎟
⎟
⎟
⎠

In LSSS based on Vandermonde Matrix, there are (n + 1)
shareholders P = {P0, P1, . . . , Pn} and a mutually trusted
dealer D, and the scheme consists of two algorithms:

HSU et al.: EFFICIENT GROUP KEY TRANSFER PROTOCOL FOR WSNs 4517

1. Share generation algorithm the dealer D first
picks a Vandermonde Matrix Vn+1 and a random vector
r = (r0, r1, r2, . . . , rn) ∈ V̄ and let r be public, in which
the secret S = s0 + s1 + · · · + sn and all computations are
performed in the finite field K , and D computes:

⎛

⎜
⎜
⎝

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

1
.

1 xn+1 x2
n+1 . . . xn

n+1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

r0
r1
. . .
rn

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

s0
s1
. . .
sn

⎞

⎟
⎟
⎠ .

Then, the algorithm outputs a list of (n + 1) shares
(x0, x1, . . . , xn) and distributes each share xi to corresponding
shareholder Pi secretly.

2. Secret reconstruction algorithm this algorithm takes all
(n+1) shares (x0, x1, . . . , xn) and the public vector r as inputs,
and outputs the secret S = s0 + s1 + · · · + sn by computing
each inner product (v(xi), r) = si .

We note that because every set of at most (t + 1) vectors
of the form v(x) is linearly independent, the above scheme
satisfies the basic requirements of secret sharing scheme as
follows: (1) With knowledge of all (n + 1) shares, it can
reconstruct the secret S easily; (2) With knowledge of fewer
than (n + 1) shares, it cannot get any information about the
secret S. LSSS based on Vandermonde Matrix is information-
theoretically secure since the scheme satisfies these two
requirements without making any computational assumption.
For more information on this scheme, readers can refer to the
original paper [22].

III. DESIGN PRINCIPLES

In this section, we describe the model of our group key
distribution protocol and the security goals for this protocol.

A. Model

In our design, KGC firstly need to share a secret with
each member of the group secretly. Then, these shared secrets
determine a group of linearly independent vectors, where the
number of these vectors is equal to the number of group
members. Further, KGC can select a session key and sep-
arately compute the inner products of these vectors and a
random vector determined by all group members. Afterwards,
KGC publishes each value of the session key minus each inner
product, where the number of those public values is equal to
the number of group members. On the other hand, each group
member is able to use his/her secret and the related public
value to reconstruct the session key. Finally, all group members
share a common session key for group communications.

B. Security Goals

The main security goals for our group key distribution
protocol are: 1) key freshness; 2) key confidentiality; and
3) key authentication.

Key freshness is to ensure that a group key has never been
used before. Thus, a compromised group key cannot cause any
further damage of group communication. Key confidentiality
is to protect the group key such that it can only be recovered

by authorized group members; but not by any un-authorized
user. Key authentication is to provide assurance to authorized
group members that the group key is distributed by KGC; but
not by an attacker.

IV. THE PROPOSED PROTOCOL

The proposed group key transfer protocol consists of three
processes: initialization of KGC, user registration, and group
key generation and distribution. Suppose that a set of users
is {1, . . . , n} and the group is {1, . . . , t}, where n ≥ t . The
detailed description is as follows:

A. Initialization of KGC

The KGC randomly chooses two safe large primes p and q
(i.e., primes such that p′ = p−1

2 and q ′ = q−1
2 are also primes)

and computes m = pq , where m � n. m is made publicly
known.

B. User Registration

Each user is required to register at KGC for subscribing
the key distribution service. The KGC keeps tracking all
registered users and removing any unsubscribed users. During
registration, KGC shares a secret, xi ∈ K , with each user i ,
where K is a finite field with the characteristic char(K) = m
and xi 	= x j for any i 	= j , i, j ∈ {1, . . . , n}. Thus, a secure
channel is needed initially to share this secret with each user.
From the shared secret xi , n values (xi)

k for k = 1, . . . , n can
be computed and saved by KGC and each user i , which will
be used to access v(xi) later. Then, KGC will transport the
group key and interact with all group members in a broadcast
channel.

C. Group Key Generation and Distribution

Suppose that V̄ = K t+1 is the (t + 1) dimensional lin-
ear space over K . Given a basis {e1, . . . , et+1} of V̄ with

�ei = (0, . . . , 0,
i
1, 0, . . . , 0) ∈ K t+1 for 1 ≤ i ≤ t + 1, the

mapping v : K → V̄ defined by v(x) = ∑t+1
i=1 xi−1ei =

(1, x, x2, . . . , xt) is determined. Upon receiving a group key
generation request from any user, KGC needs to access all
vectors v(xi) for 1 ≤ i ≤ t and randomly select a group key.
KGC will distribute this group key to all group members
in a secure and authenticated manner. All communications
between KGC and group members are in a broadcast channel.
For example, we assume that a group consists of t mem-
bers, {1, . . . , t}, and shared secrets are x1, x2, . . . , xt , and
the corresponding vectors are v(x1), v(x2), . . . , v(xt). The key
generation and distribution process contains five steps.

• Step 1. The initiator sends a key generation request to
KGC with a list of group members as {1, . . . , t}.

• Step 2. KGC broadcasts the list of all participating
members, {1, . . . , t}, as a response.

• Step 3. Each participating group member needs to send
a random challenge, Ri ∈ K , to KGC.

• Step 4. KGC randomly selects a group key KG ∈ K and
a random value R0 ∈ K . KGC also computes t additional

4518 IEEE SENSORS JOURNAL, VOL. 16, NO. 11, JUNE 1, 2016

values, Ui = (KG − Ki) mod m for i = 1, . . . , t , and
Auth = h(KG , 1, . . . , t, R0, R1, . . . , Rt , U1, . . . , Ut),
where the vector �r = (R0, Ri , . . . , Rt) ∈ K t+1, the inner
product (v(xi), �r) = Ki and h is a one-way hash function.
KGC broadcasts {Auth, R0, Ui }, for i = 1, . . . , t , to all
group members. All computations are performed in Z∗

m .
• Step 5. For each group member, i , knowing the pub-

lic value, Ui , is able to compute the inner prod-
uct (v(xi), �r) = Ki and recover the group key
KG = (Ui + Ki) mod m. Then, i computes
h(KG , 1, . . . , t, R0, R1, . . . , Rt , U1, . . . , Ut) and checks
whether this hash value is identical to Auth. If these two
values are identical, i authenticates the group key is sent
from KGC.

V. SECURITY ANALYSIS

Adversaries can be categorized into two types. The first type
of adversaries is outsiders of a particular group. The outside
attacker can try to recover the secret group key belonging to
a group that the outsider is unauthorized to know. This attack
is related to the confidentiality of group key. In our proposed
protocol, anyone can send a request to KGC for requesting a
group key service. The outside attacker may also impersonate a
group user to request a group key service. In security analysis,
we will show that the outside attacker gains nothing from
this attack since the attacker cannot recover the group key.
The second type of adversaries is insiders of a group who are
authorized to know the secret group key; but inside attacker
attempts to recover other member’s secret shared with KGC.
Since any insider of a group is able to recover the same
group key, we need to prevent inside attacker knowing other
member’s secret shared with KGC.

Theorem 1: The proposed protocol achieves the following
security goals: 1) key freshness, 2) key confidentiality, and
3) key authentication.

Proof: We assume that a group consists of t members,
{1, 2, . . . , t}, and shared secrets are x1, x2, . . . , xt . The pro-
posed protocol achieves the following security goals:

1) Key freshness is ensured by KGC since a random
group key is selected by KGC for each service request.
In addition, the equation KG = (Ui + Ki) mod m
used to recover the group key is a function of random
challenge selected by each group member and random
value R0 ∈ K selected by KGC.

2) Key confidentiality is provided due to the secu-
rity features of the proposed LSSS. KGC ran-
domly selects a group key KG and makes t values,
Ui=(KG−Ki) mod m for i = 1, . . . , t , publicly known.
For each authorized group member, including the secret
shared with KGC, he/she knows the inner product
(v(xi), �r) = Ki . Thus, any authorized group member
is able to recover the secret group key KG = (Ui + Ki)
mod m. However, for any unauthorized member
(or outsider), there are only t values Ui = (KG − Ki)
mod m for i = 1, . . . , t available and he obtains
no information on Ki and

∑
1≤i≤t Ki . Thus, unau-

thorized member knows nothing about the group key.
This property is information theoretically secure since

there has no other computational assumption based
upon.

3) Key authentication is provided through the value Auth
in step 4. Auth is a one-way hash output with the secret
group key and all members’ random challenges as input.
Since the group key is known only to authorized group
members and KGC, unauthorized members cannot forge
this value. Any insider also cannot forge a group key
without being detected since the group key is a function
of the secret shared between each group member and
KGC. In addition, any replay of {Auth, R0, Ui }, for
i = 1, . . . , t , of KGC in step 4 can be detected since the
group key is a function of each group member’s random
challenge.

Theorem 2 (Outsider Attack): Assume that an attacker who
impersonates a group member for requesting a group key
service, then the attacker can neither obtain the group key
nor share a group key with any group member.

Proof: Although any attacker can impersonate a group
member to issue a service request to KGC without being
detected and KGC will respond by sending group key infor-
mation accordingly; however, the group key can only be
recovered by any group member who shares a secret with
KGC. This security feature is information theoretically secure,
which is ensured by the proposed LSSS.

If the attacker tries to reuse a compromised group key by
replaying previously recorded key information from KGC, this
attack cannot succeed in sharing this compromised group key
with any group member since the group key is a function
of each member’s random challenge and the secret shared
between group member and KGC. A compromised group key
cannot be reused if each member selects a random challenge
for every conference.

Theorem 3 (Insider Attack): Assume that the protocol runs
successfully v times and the applied factoring instances are
intractable, then the secret xi ∈ K of each group mem-
ber shared with KGC remains unknown to all other group
members (and outsiders).

Proof: For a group key service request, KGC randomly
selects a group key KG and makes t values, Ui = (KG − Ki)
mod m for i = 1, . . . , t , publicly known. For each
authorized group member, with knowledge of the secret
shared with KGC and t public information, he/she
knows Ui and is able to compute the inner product
(v(xi), �r) = Ki . Thus, any authorized group member is
able to reconstruct the group key KG = (Ui + Ki)
mod m, where the vector �r = (R0, Ri , . . . , Rt) ∈ K t+1.
However, the secret xi ∈ K of each group member shared
with KGC remains unknown to outsiders.

In our proposed protocol, group key service requests from
group members are not authenticated. An adversary (insider)
can make several service requests to KGC and forge challenges
of the target group member. For example, the adversary makes
two service requests for a group containing the adversary
and the target group member. The adversary also forges the
challenges of the target group member for these two services.
The KGC generates the group keys KG1 and KG2 respec-
tively. Thus, the adversary can obtain the inner products

HSU et al.: EFFICIENT GROUP KEY TRANSFER PROTOCOL FOR WSNs 4519

(v(xt arg et), �r1) = Kt arg et1(mod m) and (v(xt arg et), �r2) =
Kt arg et2(mod m). By subtracting these two inner products,
the adversary obtains a tth degree equation as

f (xt arg et) = (v(xt arg et), �r1 − �r2)

= Kt arg et1 − Kt arg et2(mod m),

where v(xt arg et) = ∑t+1
i=1 (xt arg et)

i−1ei . It is commonly
believed that the adversary needs to first solve two sepa-
rate equations in f (xt arg et) = Kt arg et1 − Kt arg et2(mod p)
and f (xt arg et) = Kt arg et1 − Kt arg et2(mod q), respectively,
in order to solve the secret xt arg et . This is an intractable prob-
lem due to factoring assumption. Some well-known modern
cryptosystems are also based on the same assumption. For
example, the security of Rabin’s cryptosystem and the security
of RSA cryptosystem.

VI. PERFORMANCE EVALUATION

In this section, we will firstly compare our scheme with
public-key-based key distribution protocols. Then, we compare
ours with a threshold secret-sharing-based key distribution
protocol [21] proposed recently, in terms of computational and
communication costs.

A. Comparison 1

In comparing with the public-key-based key distribution
protocols, our scheme has the following advantages:

(a) Instead of using public-key encryptions in which the
security is based on some computation assumptions, we
use the secret sharing as the tool of broadcast encryp-
tion in which the security is unconditionally secure.
In addition, instead of performing encryption one at a
time, our scheme can perform encryption all at once to
reduce computational complexity.

(b) The public-key-based key distribution protocol requires
larger rekeying overheads when membership of any user
has changed since broadcasting keys need to be updated.
But our scheme uses secret sharing and KGC can
manage any membership change efficiently. There is no
rekeying issue.

B. Comparison 2

1) Time Complexities: Let TM, TI and TH be execu-
tion time for performing a modular multiplication, a modu-
lar inverse and the one-way hash function H , respectively.
As compared to TM or TI, the time for performing modular
addition or subtraction required in the proposed scheme can
be ignored.

a) The proposed scheme: In the initial phase of user
registration, the time complexity for computing (xi)

k for
k = 1, . . . , n by each user i is (n − 1) × TM, and the
time complexity for computing (xi)

k for k = 1, . . . , n and
i = 1, . . . , n by KGC is n × (n − 1) × TM. For each group
key transfer, when a group key KG ∈ K and a random value
R0 ∈ K are selected, the time complexity for distributing the
group key by KGC is t × (t + 1) × TM + TH. Then, the
time complexity for recovering the group key by each group
member is (t + 1) × TM + TH.

TABLE I

COMPUTATIONAL COMPARISON OF THE PROPOSED SCHEME AND
HARN’s SCHEME IN EACH GROUP KEY DISTRIBUTION

TABLE II

COMPARISON OF COMMUNICATION COSTS BETWEEN THE

PROPOSED SCHEME AND HARN’s SCHEME

b) Harn’s scheme: For each group key transfer, when a
group key k is selected, the time complexity for distributing
the group key by KGC is t × (t + 1) × t × (TM + TI) + TH.
Then, the time complexity for recovering the group key by
each group member is (t + 1) × t × (TM + TI) + TH.

Computational comparison of the proposed scheme and
Harn’s scheme [21] is shown in Table 1. From Table 1,
as compared with Harn’s scheme, in the initial phase of
user registration, the proposed scheme requires (n − 1) addi-
tional modular multiplication operations for each user, and
n × (n − 1) additional modular multiplication operations for
KGC. However, in each group key transfer, the proposed
scheme using LSSS causes a significant decrease of the
computational complexity of system.

2) Communication Costs: The communication costs
required in the proposed scheme are measured by the total
volume of data transmission during user registration and group
key generation and distribution, respectively. From m = pq ,
|pq| is the size of the adopted finite field Z∗

m and |H | is
the output size of one-way hash function H . Obviously,
the communication cost for user registration is n|pq|. The
communication cost for group key generation and distribution
is t|pq| + (t + 1)|pq| + |H |.

In Harn’s scheme, for the same number n of users, the
communication costs required in user registration is 2n|pq|
and the communication cost for group key generation and
distribution is t|pq| + 2t|pq| + |H |.

Comparison of communication costs between the proposed
scheme and Harn’s scheme [21] is shown in Table 2. It can be
seen that in the proposed scheme using LSSS, the communi-
cation costs required can be reduced by n|pq| + (t − 1)|pq|.

VII. CONCLUSIONS

We have proposed an efficient group key transfer pro-
tocol based on a linear secret sharing for wireless sensor
networks (WSNs). We provide group key authentication.

4520 IEEE SENSORS JOURNAL, VOL. 16, NO. 11, JUNE 1, 2016

Security analysis for possible attacks is included. As a result,
this protocol can resist potential attacks and also significantly
reduce the overhead of system implementation. This protocol
is suitable for mobile communications.

REFERENCES

[1] T. Gao, D. Greenspan, M. Welsh, R. R. Juang, and A. Alm, “Vital signs
monitoring and patient tracking over a wireless network,” in Proc. IEEE
27th Annu. Int. Conf. Eng. Med. Biol. Soc. (IEEE-EMBS), Jan. 2006,
pp. 102–105.

[2] L. Gu et al., “Lightweight detection and classification for wireless sensor
networks in realistic environments,” in Proc. 3rd ACM Conf. Embedded
Netw. Sensor Syst., Nov. 2005, pp. 205–217.

[3] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Commun. ACM, vol. 43, no. 5, pp. 51–58, 2000.

[4] L. Eschenauer and V. D. Gligor, “A key-management scheme for
distributed sensor networks,” in Proc. 9th ACM Conf. CCS, 2002,
pp. 41–47.

[5] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in Proc. IEEE Symp. SP, May 2003, pp. 197–213.

[6] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney, “A key
management scheme for wireless sensor networks using deployment
knowledge,” in Proc. IEEE INFOCOM, Mar. 2004, pp. 586–597.

[7] A. Rasheed and R. Mahapatra, “Key predistribution schemes for estab-
lishing pairwise keys with a mobile sink in sensor networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 176–184, Jan. 2011.

[8] S, Ruj, A, Nayak, and I. Stojmenovic, “Pairwise and triple key dis-
tribution in wireless sensor networks with applications,” IEEE Trans.
Comput., vol. 62, no. 11, pp. 2224–2237, Nov. 2013.

[9] F. Li and P. Xiong, “Practical secure communication for integrating
wireless sensor networks into the Internet of Things,” IEEE Sensors J.,
vol. 13, no. 10, pp. 3677–3684, Oct. 2013.

[10] R. Blom, “Non-public key distribution,” in Advances in Cryptology,
D. Chaum, R. L. Rivest, and A. T. Sherman, Eds. New York, NY, USA:
Plenum, 1982, pp. 231–236.

[11] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M.
Yung, “Perfectly secure key distribution for dynamic conferences,” Inf.
Comput., vol. 146, no. 1, pp. 1–23, 1998.

[12] D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor
networks,” in Proc. 10th ACM Conf. Comput. Commun. Secur. (CCS),
Oct. 2003, pp. 52–61.

[13] E. Khan, E. Gabidulin, B. Honary, and H. Ahmed, “Matrix-based
memory efficient symmetric key generation and pre-distribution scheme
for wireless sensor networks,” IET Wireless Sensor Syst., vol. 2, no. 2,
pp. 108–114, Jun. 2012.

[14] A. Beimel, “Secure schemes for secret sharing and key distribution,”
M.S. thesis, Faculty Comput. Sci., Technion-Israel Inst. Technol., Haifa,
Israel, 1996.

[15] G. R. Blakley, “Safeguarding cryptographic keys,” in Proc. Nat. Comput.
Conf. Amer. Fed. Inf. Process. Soc. (AFIPS), vol. 48. 1979, pp. 313–317.

[16] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and
M. Yung, “Perfectly secure key distribution for dynamic conferences,”
Inf. Comput., vol. 146, no. 1, pp. 1–23, Oct. 1998.

[17] R. Blom, “An optimal class of symmetric key generation systems,” in
Proc. EUROCRYPT Workshop Adv. Cryptol., 1984, pp. 335–338.

[18] S. Berkovits, “How to broadcast a secret,” in Proc. EUROCRYPT
Workshop Adv. Cryptol., 1991, pp. 536–541.

[19] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, Nov. 1976.

[20] A. Fiat and M. Naor, “Broadcast encryption,” in Proc. 13th Annu. Int.
Cryptol. Conf. Adv. Cryptol. (CRYPTO), 1994, pp. 480–491.

[21] L. Harn and C. Lin, “Authenticated group key transfer protocol based
on secret sharing,” IEEE Trans. Comput., vol. 59, no. 6, pp. 842–846,
Jun. 2010.

[22] C.-F. Hsu, Q. Cheng, X. Tang, and B. Zeng, “An ideal multi-
secret sharing scheme based on MSP,” Inf. Sci., vol. 181, no. 7,
pp. 1403–1409, 2011.

[23] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems-Local and Metropolitan Area
Networks-Specific Requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications Amendment 6:
Medium Access Control (MAC) Security Enhancements. IEEE Standard
802.11i-2004, IEEE Computer Society, 2004.

[24] M. Karchmer and A. Wigderson, “On span programs,” in Proc. 8th Annu.
Conf. Struct. Complex., San Diego, CA, USA, May 1993, pp. 102–111.

[25] C.-H. Li and J. Pieprzyk, “Conference key agreement from secret
sharing,” in Proc. 4th Australasian Conf. Inf. Secur. Privacy (ACISP),
1999, pp. 64–76.

[26] C. S. Laih and J. Y. Lee, “A new threshold scheme and its application
in designing the conference key distribution cryptosystem,” Inf. Process.
Lett., vol. 32, no. 3, pp. 95–99, 1989.

[27] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[28] G. Sáez, “Generation of key predistribution schemes using secret sharing
schemes,” Discrete Appl. Math., vol. 128, no. 1, pp. 239–249, 2003.

[29] C. Hsu, B. Zeng, G. Cui, and L. Chen, “A new secure authenticated
group key transfer protocol,” Wireless Pers. Commun., vol. 74, no. 2,
pp. 457–467, 2014.

[30] C. Hsu, B. Zeng, and M. Zhang, “A novel group key transfer for big
data security,” Appl. Math. Comput., vol. 249, pp. 436–443, Dec. 2014.

Ching-Fang Hsu was born in Hubei, China, in 1978. She received the M.Eng.
and Ph.D. degrees in information security from the Huazhong University of
Science and Technology, Wuhan, China, in 2006 and 2010, respectively. From
2010 to 2013, she was a Research Fellow with the Huazhong University
of Science and Technology. She is currently an Assistant Professor with
Central China Normal University, Wuhan, China. Her research interests are
in cryptography and network security, especially in secret sharing and its
applications.

Lein Harn received the B.Sc. degree in electrical engineering from National
Taiwan University in 1977, the M.S. degree in electrical engineering from
the State University of New York, Stony Brook, in 1980, and the Ph.D.
degree in electrical engineering from the University of Minnesota in 1984. He
joined the Department of Electrical and Computer Engineering, University of
Missouri-Columbia, as an Assistant Professor in 1984. In 1986, he moved to
the Computer Science and Telecommunication Program at the University of
Missouri–Kansas City (UMKC). While at UMKC, he went on development
leave to work with the Racal Data Group, FL, for a year. His research interests
are cryptography, network security, and wireless communication security. He
has authored number of papers in digital signature design and applications,
and wireless and network security. He has written two books on security. He
is investigating new ways of using digital signature in various applications.
In 2015, he was appointed as a Chu-Tian Researcher with the School of
Computer Science and Technology, Hubei University of Technology, China.

Tingting He received the Ph.D. degree from Central China Normal University,
in 2003. She is currently a Professor with Central China Normal University,
Wuhan, China. Her research interests are in natural language processing and
network security.

Maoyuan Zhang received the Ph.D. degree in computer science from the
Huazhong University of Science and Technology, Wuhan, China. He is
currently a Professor with Central China Normal University, Wuhan. His
research interests are in computer networks and network security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

