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a b s t r a c t 

Secret sharing (SS) is one of the most important cryptographic primitives used for data 

outsourcing. The ( t, n ) SS was introduced by Shamir and Blakley separately in 1979. The se- 

cret sharing policy of the ( t, n ) threshold SS is far too simple for many applications because 

it assumes that every shareholder has equal privilege to the secret or every shareholder is 

equally trusted. Ito et al. introduced the concept of a general secret sharing scheme (GSS). 

In a GSS, a secret is divided among a set of shareholders in such a way that any “qualified ”

subset of shareholders can access the secret, but any “unqualified ” subset of sharehold- 

ers cannot access the secret. The secret access structure of GSS is far more flexible than 

threshold SS. In this paper, we propose an optimized implementation of GSS. Our pro- 

posed scheme first uses Boolean logic to derive two important subsets, one is called Min 

which is the minimal positive access subset and the other is called Max which is the max- 

imal negative access subset, of a given general secret sharing structure. Then, conditions of 

parameters of a GSS are established based on these two important subsets. Furthermore, 

integer linear/non-linear programming is used to optimize the size of shares of a GSS. The 

complexity of linear/non-linear programming is O (n ) , where n is the number of shares 

generated by the dealer. This proposed design can be applied to implement GSS based on 

any classical SS. However, our proposed method is limited to be applicable to some gen- 

eral secret sharing policies. We use two GSSs, one is based on Shamir’s weighted SS (WSS) 

using linear polynomial and the other is based on Asmuth-Bloom’s SS using Chinese Re- 

mainder Theorem (CRT), to demonstrate our design. In comparing with existing GSSs, our 

proposed scheme is more efficient and can be applied to all classical SSs. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

The (t, n ) SS was introduced by Shamir [24] and Blakley [2] independently in 1979 and then became one of the most

important cryptographic primitives discussed by many researchers [10,17,18,22] . In a (t, n ) SS, a dealer divides a secret s

into n shares and s is shared among a set of n shareholders, U = { U 1 , U 2 , ..., U n } , in such a way that any t or more than t

shareholders can reconstruct the secret s ; while fewer than t shareholders cannot reconstruct the secret s . In Shamir’s (t, n )
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SS, a dealer generates n shares based on a linear polynomial having degree t − 1 . Secret reconstruction is based on Lagrange

interpolating formula using any t or more than t private shares. Shamir’s (t, n ) SS is unconditionally secure. There are other

types of SSs. For example, Blakely’s scheme [2] is based on Geometry, Mignotte’s scheme [19] and Asmuth-Bloom’s scheme

[1] are based on Chinese remainder theorem (CRT), and McEliece et al. scheme [20] is based on Reed-Solomon codes. 

The weighted (t, n ) secret sharing scheme (WSS) was originally proposed by Shamir [24] . In a WSS, each share of a

shareholder has a positive weight. The secret can be recovered if the overall weight of shares is equal to or larger than the

threshold; but the secret cannot be recovered if the overall weight of shares is smaller than the threshold value. In fact,

Shamir’s (t, n ) SS is a special type of WSSs in which the weight of all shares is the same. One simple way to implement

a WSS using Shamir’s (t, n ) SS is to assign multiple shares to each shareholder according to his/her weight. There are

some papers to discuss properties and characteristics of a WSS. For example, Morillo et al. [21] discussed the property

of information rate of a WSS. Beimel et al. [3] characterized all weighted threshold access structures that are ideal. They

showed that a weighted threshold access structure is ideal if and only if it is a hierarchical threshold access structure, or a

tripartite access structure, or a composition of two ideal weighted threshold access structures that are defined on smaller

sets of users. 

The secret sharing policy of the ( t, n ) threshold SS is far too simple for many applications because it assumes that every

shareholder has equal privilege to the secret. Complicated sharing policies, in which shareholders have different privileges,

can also be realized by other general SSs [4,11] . Ito et al. [11] have introduced the concept of general secret sharing (GSS). In

a GSS, a secret is divided among a set of shareholders, U, in such a way that any “qualified” subset of Ucan access the secret,

but any “unqualified” subset of Ucannot access the secret. Benaloh et al. [4] have shown that there is a correspondence

between the set of general secret sharing functions and the set of monotone functions. Ito et al. [12] have introduced the

cumulative array technique and used it to construct a GSS based on monotone access structures. In their scheme, multiple

shares are needed for each shareholder. Benaloh et al. [4] have represented the access instances using formulae. According

to monotone access instances of a secret, a set of formulae on a set of variables is used to share the secret. Their scheme

shares the same problem as scheme proposed by Ito et al. That is, multiple shares are needed for each shareholder. Harn

et al. [8] have proposed an l -span generalized SS in which the shares can be repeatedly used for r times to reconstruct

r different secrets. However, the security of their scheme is based on RSA assumption. Horng [9] propose a method for

constructing multiple assignment schemes which is a combination of the threshold scheme and the cumulative scheme. The

cumulative map is a simple realization of the multiple assignment map based on a (t, n ) SS [11] which utilized a GSS based

on a WSS. However, the GSSs constructed by the cumulative map are inefficient. Iwamoto et al. [13] proposed an optimal

multiple assignments based on integer programming to optimize the size of shares. The complexity of solving an integer

programming problem is related to the cardinality of the constraint variables set. However, the number of variables in the

integer programming is O ( 2 n ) , where n is the number of shares generated by the dealer. Li et al. [15] proposed a method

to reduce the number of constraint variables in the integer programming problem. Srinathan et al. [25] have considered

the problem of non-perfect secret sharing (NSS) over general secret sharing policy and defined generalized monotone span

programs (MSP) to facilitate the design of NSS schemes. However, their approach captures and addresses only NSS schemes

that are linear. In 2007, Xu et al. [28] have studied new operations on secret sharing policy to construct large MSPs from

small MSPs and proposed new design of GSS. Recently, Guo et al. [6] have proposed a scheme based on the key-lock-pair

mechanism. The share of each shareholder is a pair of column vectors corresponding to the key-lock-pair. However, the

number of elements of column vectors is determined by the number of terms in the secret access structure. Iftene [14] has

proposed a GSS using CRT for special types of general access structures such as the compartmented and the weighted

threshold SSs. In 2015, Li et al. [16] have proposed a type of secret sharing schemes called ramp assignment schemes (RAS’s)

to realize general access structures (AS’s). In such a scheme, each participant is assigned a subset of primitive shares of

an optimal (k, L, m) -ramp scheme in such a way that the number of primitive shares assigned to each qualified subset is

not less than k whereas the one corresponding to any forbidden subset is not greater than k −L . RAS’s can be viewed as a

generalization of multiple assignment schemes. Very recently, Tochikubo [26] proposed a perfect GSS which is more efficient

than schemes based on scheme proposed by Benaloh et al. [4] and Tochikubo [27] . 

In a GSS, there are two most important subsets, one is called Min which is the minimal positive access subset and the other

is called Max which is the maximal negative access subset, which characterize any given general secret sharing structure. In

this paper, we first uses Boolean logic to derive these two important subsets. Our proposed method is very simple and

straightforward. Then, we propose to use these two subsets to implement a GSS. In particular, integer linear/non-linear

programming is used to optimize the size of shares of a GSS. Our design is completely different from all existing schemes.

This proposed design can be applied to implement GSS based on any classical SS. We use two GSSs, one is based on Shamir’s

weighted SS (WSS) using linear polynomial and the other is based on Asmuth-Bloom’s SS using Chinese Remainder Theorem

(CRT), to demonstrate our design. In comparing with existing GSSs, our proposed scheme is more efficient and can be

applied to all classical SSs. Here, we summarize the contributions of our paper. 

• We propose an optimized design to implement a GSS based on any classical SS. 

• For any given general secret sharing policy, Boolean logic is used to derive Min and Max, then parameters of a GSS are

determined based on M in and M ax. 

• Integer linear/non-linear programming can be used to minimize the size of shares. The complexity in the integer/non-

linear programming is O (n ) . 
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• Two GSSs, one is polynomial-based Shamir’s WSS and the other is CRT-based Asmuth-Bloom’s SS, are used to demon-

strate our design. 

• Our design can be generalized to implement a GSS based on any classical SS. 

The rest of this paper is organized as follows. In the next section, we introduce some preliminaries including CRT, and

Asmuth-Bloom SSs based on CRT. In Section 3 , we introduce our design to implement a GSS. In Section 4 , we demonstrate

the optimized implementation of a GSS based on Shamir’s WSS using linear polynomial. In Section 5 , we demonstrate the

optimized implementation of a GSS based on Asmuth-Bloom’s SS using CRT. Conclusion is given in Section 6 . 

2. Preliminaries 

In this section, we introduce some preliminaries including CRT, Mignotte’s and Asmuth-Bloom schemes based on CRT. 

2.1. Chinese remainder theorem (CRT) [5] 

Given following system of equations as 

x = s 1 mod p 1 ;
x = s 2 mod p 2 ;
·
·
·
x = s t mod p t , 

there is one unique solution as x = 

∑ t 
i =1 

N 
p i 

· y i · s i mod N, where N 
p i 

· y i mod p i = 1 , and N = p 1 · p 2 · ... · p t , if all moduli are

pairwise coprime (i.e., gcd ( p i , p j ) = 1 , for every i � = j) . 

CRT has been used in RSA decryption to speed-up the decryption process. With the knowledge of prime decomposition

of RSA composite integer and using CRT, the complexity of RSA decryption is reduced by a factor of 1 
4 . CRT can also be used

in the SS. Each of the shares is represented in a congruence, and the solution of the system of congruences using CRT is the

secret to be recovered. SS based on CRT uses, along with CRT, a special sequence of integers that guarantee the impossibility

of recovering the secret from a set of shares with less than a certain cardinality. In the next subsections, we will review two

most well-known SSs based on CRT. 

2.2. Review of Asmuth-Bloom (t, n ) SS [1] 

Share generation: In Asmuth-Bloom (t, n ) SS, the dealer selects p 0 and a sequence of pairwise coprime positive integers,

p 1 < p 2 < ... < p n , such that p 0 · p n −t+2 · ... · p n < p 1 · p 2 · ... · p t , and gcd ( p 0 , p i ) = 1 , i = 1 , 2 , ..., n, where p i is the public in-

formation associated with each shareholder, U i . For this given sequence, the dealer chooses the secret s as an integer in the

set Z p 0 . The dealer selects an integer, α, such that s + αp 0 ∈ Z p n −t+2 ·p n −t+3 ·.... ·p n , p 1 ·p 2 ·... ·p t . We want to point out that the value,

s + αp 0 , needs to be in the secure secret range , Z p n −t+2 ·p n −t+3 ·.... ·p n , p 1 ·p 2 ·... ·p t ; otherwise, the value, s + αp 0 , can be obtained

with fewer than t shares. However, in the original paper [1] , it specifies that the value, s + αp 0 , is in the set, Z p 1 ·p 2 ·... ·p t . This

range is different from the secure secret range . In other words, if s + αp 0 is selected to be smaller than the lower bound of

the secure secret range (i.e., but it is still in the range, Z p 1 ·p 2 ·... ·p t ) , then the value, s + αp 0 , can be obtained with fewer than

shares. It is obvious that this situation violates one of the security requirements of the (t, n ) SS. 

Share for the shareholder, U i , is generated as s i = s + αp 0 mod p i , and s i is sent to shareholder, U i , secretly, for i =
1 , 2 , ..., n. 

Secret reconstruction: Given a subset of t distinct shares, for example, { s i 1 , s i 2 , ..., s i t } , the secret s can be reconstructed

by solving the following system of equations as 

x = s i 1 mod p i 1 ;
x = s i 2 mod p i 2 ;
·
·
·
x = s i t mod p i t . 

Using standard CRT, a unique solution x is given as x = 

∑ t 
r=1 

N 
p i r 

· y i r · s i r mod N, where N = p i 1 · p i 2 · ... · p i t , and 

N 
p i r 

·
y i r mod p i r = 1 . Then, the secret s can be recovered by computing s = x mod p 0 . 

Asmuth and Bloom showed that the entropy of the secret decreases “not too much” when t − 1 shares are known. Inter-

est readers can refer to the original paper [1] for detailed discussion. Asmuth-Bloom’s SS can be generalized to take more

than t shares in the secret reconstruction. For example, when there are j (i.e., t < j ≤ n ) shareholders with their shares,

{ s 1 , s 2 , ..., s j } , participated in the secret reconstruction, the secret, s, can be reconstructed using standard CRT to find a

unique solution x for the system of j equations. 
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3. Proposed scheme 

In the following, we give a definition of GSS. 

Definition 1 (General secret sharing (GSS)) . A secret, s, is shared according to a given secret sharing policy by a group of

n shareholders U = { U 1 , U 2 , ..., U n } . A GSS is a method of breaking the secret, s, into n shares, s 1 , s 2 , ..., s n , with s i secretly

distributed to U i such that 

(1) if A ⊆ U is a qualified subset of shareholders, called positive access instance, according to the secret sharing policy,

then the secret, s, can be reconstructed from shares, { s i | u i ∈ A } . 
(2) if A ⊆ U is not a qualified subset of shareholders, called negative access instance, according to the secret sharing

policy, then the secret, s, cannot be reconstructed from shares, { s i | u i ∈ A } . 
The set F of all positive access instances is called positive access structure of the secret sharing policy and the set N of all

negative access instances is called negative access structure of the secret sharing policy. Suppose the positive access structure

of a given sharing policy is F . The corresponding negative access structure is N with N ∪ F = 2 U and N ∩ F = φ, where 2 U is

the power set of the shareholder set U = { U 1 , U 2 , ..., U n } , the symbol “∩ ” is logic AND, and the symbol “∪ ” is logic OR. 

The positive access structure of a GSS has the monotone increasing property. That is, if B ∈ F , and B ⊆ C ∈ U , then C ∈ F .

Similarly, the negative access structure which is the logically complement of the positive access structure of a GSS has the

monotone decreasing property. That is, if B ∈ N, and C ⊆ B ⊆ U , then C ∈ N. 

Definition 2 (Minimal positive access subset and maximal negative access subset) . A secret is shared by a set of sharehold-

ers according to a given secret sharing policy, where F is the positive access structure and N is the negative access structure,

such that 

(1) the subset, Min ∈ F , is the minimal positive access subset if for every C ⊆ Min but C − { U i | U i ∈ C} / ∈ F ; and 

(2) the subset, Max ∈ N, is the maximal negative access subset if for every C ⊆ Max but C ∪ { U i | U i ∈ U − C} / ∈ N. 

Both Min and Max can be used to characterize the secret sharing policy completely. For a GSS, if the secret can be

recovered by shareholders specified in Min , the secret can be recovered by any positive access instance. Similarly, if the

secret cannot be recovered by shareholders specified in Miax , the secret cannot be recovered by any negative access instance.

One contribution of our proposed scheme is to determine both Min and Max of a general secret sharing policy using Boolean

algebra. 

3.1. Determining elements in Min and Max using Boolean algebra 

Note that the positive access structure of a GSS has the monotone increasing property and the negative access structure

has the monotone decreasing property. For example, assume that there are four shareholders, U = { A, B, C, D } . and a given

positive access A ∩ B. This positive access implies that { (A ∩ B ∩ C ∩ D ) , (A ∩ B ∩ C ′ ∩ D 

′ ) , (A ∩ B ∩ C ′ ∩ D ) , (A ∩ B ∩ C ∩ D 

′ ) } are

positive access instances. For a given negative access A ∩ B, this negative access implies that { (A ∩ B ∩ C ′ ∩ D 

′ ) , (A ∩ B ′ ∩ C ′ ∩
D 

′ ) , (A 

′ ∩ B ∩ C ′ ∩ D 

′ ) , (A 

′ ∩ B ′ ∩ C ′ ∩ D 

′′ ) } are negative access instances. Thus, in a given positive/negative access instances, we

first need to simplify these access instances to find a simple representation of positive/negative access. 

From now on, we use the symbol “F “ to represent a positive access structure and the symbol “ f “ to represent a Boolean

function. In the following discussion, we use the Karnaugh map to demonstrate the relation between the access structure

and the Boolean function. In the Karnaugh map, each cell is marked by either “1” or “0” to represent its logic value (i.e., “1 ′′ 
stands for “Truth” and “0” stands for “False”). Adjacent 1s in the Karnaugh map represent opportunities to simplify its logic

expression. The simplified logic expression can be found by encircling groups of 1s in the map having number of 1s that

is a power of two (i.e., 1, 2, 4, 8…). Encircling groups should be as large as possible without containing any 0s. Groups may

overlap in order to make each one larger. 

If the positive access structure is F = { (B ∩ D ) ∪ (B ∩ C ∩ D ) ∪ (A ∩ B ∩ D ) ∪ (A ∩ B ∩ C ∩ D ) } , the positive access instances

in this access structure can be represented using the Karnaugh map by marking cells with “1s” . The Boolean function,

f = (A 

′ ∩ B ∩ C ′ ∩ D ) ∪ (A 

′ ∩ B ∩ C ∩ D ) ∪ (A ∩ B ∩ C ′ ∩ D ) ∪ (A ∩ B ∩ C ∩ D ) = B ∩ D, corresponds to these “1s” in the Karnaugh

map as below. 

AB\CD 00 01 11 10

00

01 1 1

11 1 1

10
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Thus, in Karnaugh map representation, these four adjacent cells can be grouped together and simplified to be B ∩ D.

Thus, the positive access instances, { A 

′ ∩ B ∩ C ′ ∩ D ) , (A 

′ ∩ B ∩ C ∩ D ) , (A ∩ B ∩ C ′ ∩ D ) , (A ∩ B ∩ C ∩ D ) } , corresponds to B ∩ D in

the minimal positive subset. In other words, the original access structure F = { (B ∩ D ) ∪ (B ∩ C ∩ D ) ∪ (A ∩ B ∩ D ) ∪ (A ∩ B ∩
 ∩ D ) } , can be simplified into F = B ∩ D. 

Similarly, if the negative access structure is N = { (D ) ∪ (B ∩ D ) } , the negative access structure can be represented using

the Karnaugh map by marking cells with “0s”. The Boolean function, f ′ = (A 

′ ∩ B ′ ∩ C ′ ∩ D 

′ ) ∪ (A 

′ ∩ B ′ ∩ C ′ ∩ D ) ∪ (A 

′ ∩ B ∩ C ′ ∩
D 

′ ) ∪ (A 

′ ∩ B ∩ C ′ ∩ D ) = A 

′ ∩ C ′ , corresponds to these “0s” in the Karnaugh map as below. 

AB\CD 00 01 11 10

00 0 0

01 0 0

11

10

Thus, in Karnaugh map representation, these four adjacent cells can be grouped together and simplified to be A 

′ ∩ C ′ .
Thus, the four negative access instances, { (A 

′ ∩ B ′ ∩ C ′ ∩ D 

′ ) , (A 

′ ∩ B ′ ∩ C ′ ∩ D ) , (A 

′ ∩ B ∩ C ′ ∩ D 

′ ) , (A 

′ ∩ B ∩ C ′ ∩ D ) } , corresponds

to B ∩ D (i.e., (A ∩ B ∩ C ∩ D ) ∩ (A 

′ ∩ C ′ )) in the maximal negative subset. In other words, the original negative access structure

N = { (D ) ∪ (B ∩ D ) } can be simplified into N = B ∩ D. 

3.2. Deriving Min and Max from a general secret sharing policy 

We use examples to demonstrate our scheme. 

Example 1. Assume that there are four shareholders, U = { A, B, C, D } , and the secret sharing policy can be expressed by the

following positive access structure, F = { (A ∩ B ∩ C) ∪ (A ∩ B ∩ D ) ∪ (B ∩ C ∩ D ) ∪ (A ∩ C ∩ D ) ∪ (A ∩ B ∩ C ∩ D ) } . The Boolean

functions, f = (A ∩ B ∩ C) ∪ (A ∩ B ∩ D ) ∪ (A ∩ B ∩ D ) ∪ (A ∩ C ∩ D ) ∪ (A ∩ B ∩ C ∩ D ) and f ′ = (A 

′ ∩ B ′ ) ∪ (A 

′ ∩ C ′ ) ∪ (A 

′ ∩ D 

′ ) ∪
(B ′ ∩ C ′ ) ∪ (B ′ ∩ D 

′ ) ∪ (C ′ ∩ D 

′ ) , correspond to the positive access structure and negative access structure, respectively. The

Karnaugh map corresponding to this positive access structure and negative access structure is given below. 

AB\CD 00 01 11 10

00 0 0 0 0

01 0 0 1 0

11 0 1 1 1

10 0 0 1 0

Karnaugh map simplification is used to derive Min = { (A ∩ B ∩ C) ∪ (A ∩ B ∩ D ) ∪ (B ∩ C ∩ D ) ∪ (A ∩ C ∩ D ) } and Max =
{ (C ∩ D ) ∪ (B ∩ D ) ∪ (B ∩ C) ∪ (A ∩ D ) ∪ (A ∩ C) ∪ (A ∩ B ) } . 

In this example assume that each shareholder has the same weight. Since Min = { (A ∩ B ∩ C) ∪ (A ∩ B ∩ D ) ∪ (B ∩ C ∩ D ) ∪
(A ∩ C ∩ D ) } , it specifies that any 3 or more than 3 shareholders can recover the secret. Furthermore, since Max = { (C ∩
D ) ∪ (B ∩ D ) ∪ (B ∩ C) ∪ (A ∩ D ) ∪ (A ∩ C) ∪ (A ∩ B ) } , it specifies that any 2 or fewer than 2 shareholders cannot recover the

secret. In other words, the secret sharing policy of this example is a (3 , 4) SS. This example demonstrates that our proposed

scheme can be used to derive both Min and Max of a threshold secret sharing scheme. 

Example 2. Assume that there are four shareholders, U = { A, B, C, D } , and the secret sharing policy can be expressed

by the following positive access structure, F = { (A ∩ B ) ∪ (A ∩ B ∩ C) ∪ (B ∩ C) ∪ (B ∩ C ∩ D ) ∪ (A ∩ C ∩ D ) ∪ (A ∩ B ∩ C ∩ D ) } .
The Boolean functions„ f = (A ∩ B ) ∪ (A ∩ B ∩ C) ∪ (B ∩ C) ∪ (B ∩ C ∩ D ) ∪ (A ∩ C ∩ D ) ∪ (A ∩ B ∩ C ∩ D ) and f ′ = (B ′ ∩ C ′ ) ∪ (B ′ ∩
D 

′ ) ∪ (A 

′ ∩ B ′ ) ∪ (A 

′ ∩ C ′ ) , correspond to the positive access structure and negative access structure, respectively. The
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Karnaugh map corresponding to this positive access structure and negative access structure is given below. 

AB\CD 00 01 11 10

00 0 0 0 0

01 0 0 1 1

11 1 1 1 1

10 0 0 1 0

Karnaugh map simplification is used to derive Min = { (A ∩ B ) ∪ (B ∩ C) ∪ (A ∩ C ∩ D ) } and Max = { (A ∩ C) ∪ (A ∩ D ) ∪ (B ∩
D ) ∪ (C ∩ D ) } . In Sections 4 and 5 , Min and Max of this example will be used to determine optimal size of shares of a GSS. 

3.3. Establishing conditions of parameters 

The outline of our proposed design is to use both Min and Max of a given secret sharing policy to determine the pa-

rameters of a GSS. Since in a secret sharing policy, Min includes all minimal positive access instances and Max includes

all negative access instances, parameters satisfying Min ensure all positive access instances in F to recover the secret and

parameters satisfying Max ensure all negative access instances in Nnot to recover the secret. In other words, our proposed

scheme greatly simplifies the implementation of a GSS by only considering parameters satisfying both Min and Max. The

secret of a general secret sharing policy needs to be recovered by the shareholders specified in Min and not to be recovered

by shareholders specified in Max. Conditions of parameters of a GSS satisfying both Min and Max are established and solved

which can enforce the secret sharing policy. In the following, we use examples to demonstrate our scheme. 

3.3.1. Implementing a GSS based on Shamir’s WSS 

Example 3. We want to implement the secret sharing policy in Example 1 based on Shamir’s WSS. 

We first give the following definition of a weighted (t, n ) SS. 

Definition 3 (Weighted (t, n ) secret sharing scheme (WSS)) . A secret, s, is shared by a group of n shareholders U =
{ U 1 , U 2 , ..., U n } having a threshold t. A WSS is a method of breaking the secret, s, into n shares, s 1 , s 2 , ..., s n , with s i secretly

distributed to U i such that 

(1) if A ⊆ U is a qualified subset of shareholders, having the overall weight of shares equal to or larger than the threshold

t, then the secret, s, can be reconstructed from shares. 

(2) if A ⊆ U is not a qualified subset of shareholders, having the overall weight of shares smaller than the threshold t, ,

then the secret, s, cannot be reconstructed from shares. 

Shamir’s (t, n ) SS is a special type of WSSs in which the weight of all shares is the same. One simple way to implement

a WSS using Shamir’s (t, n ) SS is to assign multiple shares to each shareholder according to his/her weight. 

In Shamir’s WSS, there are different weights of shares. The secret can be recovered if the overall weight of shares is equal

to or more than the threshold and the secret cannot be recovered if the overall weight of shares is less than the threshold.

Therefore, following parameters of Shamir’s WSS need to be determined in order to implement a general secret sharing

policy, (a) the threshold of the secret of a WSS, and (b) the weights of shareholders. 

Each item in M in/M ax is a positive/negative access instance which may involve multiple shareholders. For example, if U A ∩
U B is a positive access instance in Min, it means that U A and U B together can recover the secret. To satisfy this requirement,

the additive sum of weights of their shares, w A + w B , needs to be larger than or equal to the threshold, t, of the secret.

When both U A and U B present their shares, the additive sum of weights of their shares, w A + w B , is larger than or equal

to the threshold of the secret so the secret can be recovered from their shares. On the other hand, if U C ∩ U D is a negative

access instance in Max, it means that U C and U D together cannot recover the secret. To satisfy this requirement, the additive

sum of weights of their shares, w C + w D , needs to be smaller than the threshold of the secret. When both U C and U D present

their shares, their additive sum, w C + w D , is smaller than the threshold so the secret cannot be recovered from their shares.

If we use min { Min } to represent the minimal additive sum of weights in Min and max { Max } to represent the maximal

additive sum of weights in Max, the threshold, t, of the secret should be selected from max { Max } < t ≤ min { Min } in order

to satisfy both security requirements. Parameters of a GSS need to be determined to satisfy this inequality relation in order

to enforce the secret sharing policy exactly. 

If we assume that the weight of all shares is 1 . Then, from Example 1 , Min = { (A ∩ B ∩ C) ∪ (A ∩ B ∩ D ) ∪ (B ∩ C ∩ D ) ∪ (A ∩
C ∩ D ) } and Max = { (C ∩ D ) ∪ (B ∩ D ) ∪ (B ∩ C) ∪ (A ∩ D ) ∪ (A ∩ C) ∪ (A ∩ B ) } . We can obtain min { Min } = 3 and max { Max } = 2 .

Then, from the condition, max { Max } < t ≤ min { Min } , we have t = 3 . In fact, this is a (3 , 4) SS in which the threshold is 3

and any 3 or more than 3 shares can recover the secret; but fewer than 3 shares cannot recover the secret. In this example,

we demonstrate that both Min and Max can be used to determine the parameters (i.e., the threshold) of a secret sharing

policy (i.e., a threshold SS). In Section 4 , we will demonstrate our scheme for a general secret sharing policy. 
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3.3.2. Implementing a GSS based on Asmuth-Bloom SS 

In CRT-based Asmuth-Bloom SS, each shareholder has different modulus. The secret can be recovered if the product of

moduli of shareholders is larger than the lower bound of the secure secret range and the secret cannot be recovered if the

product of moduli of shareholders is smaller than secure secret range . Therefore, following parameters of a GSS need to be

determined, (a) the secure secret range , and (b) the moduli of shareholders. 

Each item in M in/M ax is a positive/negative access instance which may involve multiple shareholders. For example, if U A ∩
 B is a positive access instance in Min, it means that U A and U B together can recover the secret. To satisfy this requirement,

the shifted value, s + αp 0 , needs to be smaller than their moduli product, p A p B . When both U A and U B present their shares,

their moduli product, p A p B , is larger than the shifted value so the shifted value can be recovered from their shares. On the

other hand, if U C ∩ U D is a negative access instance in Max, it means that U C and U B together cannot recover the secret. To

satisfy this requirement, the shifted value needs to be larger than their moduli product, p C p D . When both U C and U D present

their shares, their moduli product p C p D is smaller than the shifted value so the shifter value cannot be recovered from

their shares. If we use min { Min } to represent the minimal moduli product in Min and max { Max } to represent the maximal

moduli product in Max, the shifted value should be selected from max { Max } < s + αp 0 < min { Min } ) in order to satisfy both

security requirements. Parameters of a GSS need to be determined to satisfy this inequality relation in order to enforce the

secret sharing policy exactly. We use the following example to demonstrate our scheme. 

Example 4. We want to implement the secret sharing policy in Example 1 based on Asmuth-Bloom SS. 

From Example 1 , we have Min = { (A ∩ B ∩ C) ∪ (A ∩ B ∩ D ) ∪ (B ∩ C ∩ D ) ∪ (A ∩ C ∩ D ) } and Max = { (C ∩ D ) ∪ (B ∩ D ) ∪ (B ∩
) ∪ (A ∩ D ) ∪ (A ∩ C) ∪ (A ∩ B ) } . Recall that the secret sharing policy specified in this example is a (3 , 4) SS. Any 3 or more

than 3 shareholders can recover the secret, but fewer than 3 shareholders cannot recover the secret s . The moduli products

in Min of Asmuth-Bloom (3 , 4) SS can be represented as { p r i · p r i +1 
. p r t+2 

| ∀ p r i , p r i +1 
, p r t+2 

∈ { p A , p B , p C , p D }} and the moduli

products in Max can be represented as { p r i p r i +1 
| ∀ p r i , p r i +1 

∈ { p A , p B , p C , p D }} . To satisfy the secret sharing policy, the secure

secret range can be specified as max { Max } < s + αp 0 < min { Min } . However, if all moduli satisfy p A < p B < p C < p D such that

p 0 · p C · p D < p A · p B · p C , then we have min { Min } = p A · p B · p C and max { Max } = p C · p D . Thus, we have p C · p D < s + αp 0 <

p A · p B · p C , which is the secure secret range as we described in Section 2.2 . 

In this example, we demonstrate that both Min and Max can be used to determine the parameters (i.e., the secure secret

range ) of a secret sharing policy (i.e., a threshold SS). In Section 5 , we will demonstrate our scheme for a general secret

sharing policy. 

4. Optimized implementation of GSS based on Shamir’s WSS 

In this section, we show how to use linear integer programming to optimize the size of shares of a GSS. 

4.1. Proposed scheme 

We illustrate our proposed scheme in Fig. 1 . We use the following example to demonstrate our scheme. 

Example 5. We want to implement the secret sharing policy in Example 2 based on Shamir’s WSS. 

From Example 2 , we have Min = { (A ∩ B ) ∪ (B ∩ C) ∪ (A ∩ C ∩ D ) } and Max = { (A ∩ C) ∪ (A ∩ D ) ∪ (B ∩ D ) ∪ (C ∩ D ) } . As-

sume that the weights of shares of shareholders, A, B, C and D are w A , w B , w C , w D , respectively. If we use min { Min } to

represent the minimal additive sum of weights in Min and max { Max } to represent the maximal additive sum of weights in

Max, the threshold, t, of the secret should be selected from max { Max } < t ≤ min { Min } . In other words, the upper bound of

the threshold is min { w A + w B , w B + w C , w A + w C + w D } and the lower bound of the threshold is max { w A + w C , w A + w D , w B +
w D , w C + w D } . Since the additive sum of weights of shareholders of each item in Min should be larger than the additive sum

of weights of shareholders of each item in Max, we can establish the following inequality conditions. 

From w A + w B > { w A + w C , w A + w D , w B + w D , w C + w D } ⇒ w B > w C , w B > w D , w A > w D . 

From w B + w C > { w A + w C , w A + w D , w B + w D , w C + w D } ⇒ w B > w A , w B + w C > w A + w D , w C > w D , w B > w D . 

From w A + w C + w D > { w A + w C , w A + w D , w B + w D , w C + w D } ⇒ w A + w C > w B . 

In summary, we have w B > w C > w D, w B > w A > w D, w B + w C > w A + w D , w A + w C > w B . 

Linear integer programming can be used to determine these weights. It is well known that solving linear integer prob-

lems belong to the class of NP-hard optimization problems [7] . The complexity of solving an integer programming problem

is related to the cardinality of the constraint variables set. The number of variables in the integer programming proposed

by Iwamoto et al. [13] is O ( 2 n ) , where n is the number of shares generated by the dealer; but, in our proposed scheme, the

number of variables in liner integer programming is O (n ) , In most GSSs, since the number of shareholders is limited to be

a small integer (say 10), this can greatly simplify the processing time to determine the variables. 

The objective function, O, in a linear programming can be set up as, O = min ({ max { w 1 , w 2 , ..., w n } ) , to minimize the

largest weight among all weights of shareholders, or O = min ( 
∑ n 

i =1 w i ) , to minimize the sum of all weights of shareholders.

In this given example, if we set O = min ( w A + w B + w C + w D ) , we can obtain w A = 3 , w B = 4 , w C = 2 , w D = 1 and t = 6 . A

Shamir’s WSS can be used to implement this GSS by setting the threshold of the secret to be 6 and assigning w A = 3 , w B =
4 , w = 2 , w = 1 , to shareholders, A, B, C and D, respectively. The dealer follows Shamir’s (6 , 10) SS to select a polynomial
C D 
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Fig. 1. Proposed GSS based on WSS. 

 

 

 

 

 

 

having degree 5 and generates 3 shares for A, 4 shares for B, 2 shares for C and 1 share for D. Secret can be recovered when

there are 6 or more than 6 shares available. The secret reconstruction follows classical Shamir’s (t, n ) SS. 

Remark 1. If contradict conditions, such as w A > w B and w B > w A , derived from our scheme, there have no solutions for

weights of shareholders. In the following example, we show that such contradict conditions may occur and this proposed

scheme cannot be used to provide solution. Conditions in a given position access structure which cannot be implemented

by a weighted SS deserve further study. 

Example 6. Assume that there are four shareholders, U = { A, B, C, D } , and the secret sharing policy can be expressed by the

following positive access structure, F = (A ∩ B ) ∪ (C ∩ D ) . The Karnaugh map corresponding to this positive access structure

and negative access structure is given below. 
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AB\CD 00 01 11 10

00 0 0 1 0

01 0 0 1 0

11 1 1 1 1

10 0 0 1 0

Karnaugh map simplification is used to derive Min = { (A ∩ B ) ∪ (C ∩ D ) } and Max = { (B ∩ D ) ∪ (B ∩ C) ∪ (A ∩ C) } . Assume

that the weights of shares of shareholders, A, B, C and D are w A , w B , w C , w D , respectively. If we use min { Min } to represent

the minimal additive sum of weights in Min and max { Max } to represent the maximal additive sum of weights in Max,

the threshold, t, of the secret should be selected from max { Max } < t ≤ min { Min } . In other words, the upper bound of the

threshold is min { w A + w B , w C + w D } and the lower bound of the threshold is max { w B + w D , w B + w C , w A + w C } . Since the ad-

ditive sum of weights of shareholders of each item in Min should be larger than the additive sum of weights of shareholders

of each item in Max, we can establish following inequality conditions. 

From w A + w B > { w B + w D , w B + w C , w A + w C } ⇒ w A > w D , w A > w C , w B > w C . 

From w C + w D > { w B + w D , w B + w C , w A + w C } ⇒ w C > w B , w D > w B , w D > w A . 

In summary, we have several contradict conditions from these inequality conditions. 

4.2. Security analysis 

In our proposed GSS, the threshold, t, of the secret is determined from , max { Max } < t ≤ min { Min } . For any positive

access instance in a minimal positive access subset, the additive sum of weights of this access instance is larger than or

equal to the threshold (i.e., t ≤ min { Min } ) . Thus, the secret can be recovered from shares of any positive access instance in

F . On the other hand, for any negative access instance in a maximal negative access subset, the additive sum of weights of

this negative access instance is smaller than the threshold (i.e., t > max { Max } ) . Thus, the secret cannot be recovered from

shares of any negative access instance in N. 

5. Optimized implementation of GSS based on Asmuth-Bloom SS 

5.1. Proposed scheme 

We illustrate our proposed scheme in Fig. 2 . In our proposed CRT-based GSS, the dealer follows the same procedure as

Asmuth-Bloom (t, n ) SS to select a secret, s, in the set Z p 0 . Then, the dealer selects an integer, α, and linearly shifts the

secret as s + αp 0 , into the secure secret range. The share of shareholder, U i , is computed as s + αp 0 mod p i . In the following,

we first explain how to determine the secure secret range of the shifted value, s + αp 0 , such that it can enforce the secret

sharing policy. Then, we will explain how to determine moduli of shareholders. 

Let us assume that there are n shareholders and each shareholder, U i , has a public modulus, p i . For a general secret

access structure, following Section 3.2 , we can derive Min and Max. Each item in M in/M ax is an access instance which

involve multiple shareholders. For example, if U A ∩ U B is one minimal positive instance in Min, it means that U A and U B

together can recover the secret. To satisfy this requirement, the shifted value, s + αp 0 , needs to be smaller than their moduli

product, p A p B . When both U A and U B present their shares, their moduli product, p A p B , is larger than the shifted value so

the shifted value can be recovered from their shares. On the other hand, if U C ∩ U D is one maximal negative access instance

in Max, it means that U C and U B together cannot recover the secret. To satisfy this requirement, the shifted value needs to

be larger than their moduli product, p C p D . When both U C and U D present their shares, their moduli product p C p D is smaller

than the shifted value so the shifter value cannot be recovered from their shares. If we use min { Min } to represent the

minimal moduli product in Min and max { Max } to represent the maximal module product in Max, the shifted value should

be selected from the secure secret range, as ( max { M ax } , min { M in } ) (i.e., max { M ax } < s + αp 0 < min { Min } ) in order to satisfy

both security requirements. We use the following example to demonstrate our design. 

Example 7. We want to implement the secret sharing policy in Example 2 based on Asmuth-Bloom (t, n ) SS. 

From Example 2 , we have Min = { (A ∩ B ) ∪ (B ∩ C) ∪ (A ∩ C ∩ D ) } and Max = { (A ∩ C) ∪ (A ∩ D ) ∪ (B ∩ D ) ∪ (C ∩ D ) } . As-

sume that the moduli of A, B, C and D are p A , p B , p C , p D , respectively. The upper bound of the secure secret range is

min { p A p B , p B p C , p A p C p D } and the lower bound of the secure secret range is max { p A p C , p A p D , p B p D , p C p D } . Since every moduli

product in SetMin should be larger than every moduli product in SetMax, we have following inequality conditions. 

From p A p B > { p A p C , p A p D , p B p D , p C p D } ⇒ p B > p C , p B > p D , p A > p D . 

From p B p C > { p A p C , p A p D , p B p D , p C p D } ⇒ p B > p A , P B P C > P A P D , p C > p D , p B > p D . 

From p A p C p D > { p A p C , p A p D , p B p D , p C p D } ⇒ p B > p C , p A p C > p B . 

In summary, we obtain the following inequality conditions, p B > p C > p D, p B > p A > p D, p A p C > p B . 
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Fig. 2. Proposed GSS based on CRT. 

 

 

 

 

 

 

 

 

We can use non-linear integer programming to determine these moduli. The objective function, O, can be set up to

minimize the size of shares. For example, if O = min ({ max { p 1 , p 2 , ..., p n } ) , it minimizes the largest modulus in all moduli of

shareholders, or O = min ( 
∑ n 

i =1 p i ) , it minimizes the sum of moduli of shareholders. The product form of variables can be

easily avoided and changes the problem into a linear integer optimization [23] . More research works are needed to solve

our proposed non-linear integer programming. 

Remark 2. Following the same discussion in Remark 1 , the contradict conditions, such as p A > p B and p B > p A , cannot be

occurred in our scheme. 

5.2. Security 

In our proposed GSS, the shifted value, s + αp 0 , is from the secure secret range i.e., max { Max } < s + αp 0 < min { Min } . For

any positive access instance, the moduli product of this access instance is larger than the shifted value (i.e., > min { Min } ) .
Thus, the shifted value can be recovered from shares of this access instance. On the other hand, for any negative access
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instance, the moduli product of this negative access instance is smaller than the shifted value (i.e., < max { Max } ) . Thus, the

shifted value cannot be recovered from shares of this negative access instance. 

Let us analyze the security of a different situation. We assume that U A ∩ U B ∩ U C is one positive access instance in the

minimal positive access subset. Shareholders, U A and U B , with their shares together can recover a value, s ′′ ∈ (0 , p A p B ) .

The “real” shifted value, s ′ = s + αp 0 , selected in the secure secret range , max { Max } < s + αp 0 < min { Min } , is different from

s ′′ ∈ (0 , p A p B ) since s ′′ ∈ (0 , p A p B ) < max { SetMax } . Shareholders, U A and U B , together cannot recover the “real” shifted value

from s ′′ . However, there exists the following relation between s ′′ and s ′′ . That is, s ′′′ + λp 0 = s ′ ∈ ( max { M ax } , min { M in } ) .
The number of possible values of λ which can shift s ′′ into the secure secret range , max { Max } < s + αp 0 < min { Min } , is
min { M in }−max { M ax } 

p A p B 
. However, there is only one λ corresponding to the “real” shifted value. Since the modulus, p 0 , satisfies p 0 ·

max { Max } < min { Min } , we have min { M in }−max { M ax } 
p A p B 

> 

min { M in }−max { M ax } 
max { Max } > 

p 0 ·max { Max }−max { tMax } 
max { Max } > p 0 − 1 . Thus, the collection of

possible values of λ is no less than the collection of possible values of the secret s. No useful information is leaked from

the collection of shares in this case. 

6. Conclusion 

The secret sharing policy of the ( t, n ) threshold SS is far too simple for many applications because it assumes that every

shareholder has equal privilege to the secret. A general design to implement a GSS based on any classical SS is proposed in

this paper. The dealer first determines Min and Miax from a secret sharing policy and then use this information to obtains

inequality conditions of parameters of a GSS. Integer optimization is used to minimize the size of shares. Two GSSs, one

is based on WSS using linear polynomial and the other is based on Asmuth-Bloom (t, n ) SS using CRT, are included to

demonstrate our design. 
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