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Abstract Efficient key establishment is an important

problem for secure group communications. The commu-

nication and storage complexity of group key establish-

ment problem has been studied extensively. In this paper,

we propose a new group key establishment protocol whose

computation complexity is significantly reduced. Instead of

using classic secret sharing, the protocol only employs a

linear secret sharing scheme, using Vandermonde Matrix,

to distribute group key efficiently. This protocol drastically

reduces the computation load of each group member and

maintains at least the same security degree compared to

existing schemes employing traditional secret sharing. The

security strength of this scheme is evaluated in detail. Such

a protocol is desirable for many wireless applications

where portable devices or sensors need to reduce their

computation as much as possible due to battery power

limitations. This protocol provides much lower computa-

tion complexity while maintaining low and balanced

communication complexity and storage complexity for

secure group key establishment.

Keywords Wireless group key transfer � Vandermonde

matrix � Linear secret sharing � Computation-efficient

1 Introduction

In many applications related to wireless networks and

distributed computing, group communications [28–30] is

an efficient means of a many-to-many communication style

in a group, this goes beyond both one-to-one communi-

cation (i.e., unicast) and one-to-many communication (i.e.,

multicast). The privacy of a group communication session

is usually ensured using (symmetric) encryption. All the

members in a group share a session (group) key. However,

the group membership changes dynamically. Thus, group

keys shall change dynamically to ensure both forward

secrecy and backward secrecy of group sessions. The for-

ward secrecy is maintained if an old member who has been

excluded from the current and future group sessions cannot

access the communication of the current and future group

sessions, and the backward secrecy is guaranteed if a new

member of the current group session cannot recover the

communication data of past sessions. Each group session

thus needs a new group key that is only known to the

current group members. At the same time, in group key

transfer, outsider attacker can try to recover the secret

group key that the outsider of a particular group is unau-

thorized to know, and insider attacker who is authorized to

know the secret group key can attempt to obtain other

group member’s secret that is used to recover the group

key. Each group key transfer thus needs to resist the out-

sider and the insider attackers.

In this paper, we study how a group key can efficiently

be transmitted in computation. We adopt a common model

where group keys are issued and transmitted by a key

generation center (KGC), as it has much less communi-

cation complexity, as compared to distributed key

exchange protocols, which is a very desired property in

most wireless applications [1–6]. The resources needed for
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the KGC to transmit group keys to group members include

communication, storage, and computation resources. The

communication complexity is usually measured by the

number of data bits that need to be transmitted from the

KGC to group members to convey information of group

keys, whereas the storage complexity is measured by the

number of data bits that the KGC and group members need

to store to obtain group keys. Another similarly important

but usually undernoticed, if not ignored, factor is the

computation complexity, which can be measured by the

number of computation operations (or the computation

time on a given computing platform) that the KGC and

group members need to distribute and recover group keys.

Hereafter, the problem of how resources can effectively be

used to distribute group keys is referred to as the group key

transfer problem.

The group key transfer problem has been studied

extensively in the larger context of key management for

secure group communications [7, 8], mainly on balancing

the storage complexity and the communication complexity.

Research efforts have been made to achieve low commu-

nication and storage complexity for group key transfer. In

addition to using (symmetric) encryption, static secret

sharing via broadcast channel was studied in [9, 10].

However, this threshold-based scheme can only distribute a

group key to a designated group of members for one-time

use. Thus, the scheme does not provide forward or back-

ward secrecy. A secure lock method based on the Chinese

remainder theorem was proposed in [11]. However, its

prohibitively high communication complexity and com-

putation complexity make it only practical for a very small

group with limited number of members. Various theoretical

measures and schemes for group key distribution were

introduced in [12]. Along the same line, many research

efforts have been made on balancing communication

complexity and storage complexity of the group key dis-

tribution problems, for example, [1, 2, 13–16].

Although most research on group key transfer has been

on balancing communication complexity and storage

complexity, very few efforts have been made to reduce

computation complexity [17]. It has been long assumed

that expensive encryption and decryption operations are

necessary to distribute group keys. When group commu-

nication is becoming increasingly practical over general

Internet, it especially gains most on true broadcast com-

munication media such as wireless networks. In such

wireless systems, group members are often of various

lightweight mobile devices or sensors. Since it is becoming

increasingly affordable to embed considerable computing

power (and storage capacity) into these devices, their bat-

tery power will remain to be limited for a long time ahead.

Computation complexity is thus more important than

storage complexity for these devices in many applications.

Hence, it becomes at least equally, if not more important,

to reduce the computation complexity of the group key

transfer problem, which has been understudied so far.

Secret sharing was first introduced by Blakley [18] and

Shamir [10] in 1979. Since avoiding the use of encryption

one by one can introduces less computation complexity and

it maintains at least the same security degree of using

encryption algorithms, secret sharing has been used to

design group key transfer protocols. Laih et al. [19] pro-

posed the first algorithm based on this approach using any

(t, n) secret sharing scheme to distribute a group key to a

group consisting of (t - 1) members. Later, there are some

papers [20–22] following the same concept to propose

ways to distribute group messages to multiple users.

Recently, [23] proposed a novel group key transfer proto-

col using (t, n) secret sharing that provided confidentiality

and authentication, where KGC and each group member

need to compute a t-degree interpolating polynomial to

distribute and recover the secret group key.

In this paper, we propose a new group key transfer

scheme that drastically reduces computation complexity and

yet maintains at least the same security degree of using

classic threshold secret sharing without increasing commu-

nication or storage complexity. In our scheme, information

related to group keys is hidden using Vandermonde Matrix

rather than interpolating polynomial. In general, linear secret

sharing scheme (LSSS) based on Vandermonde Matrix has

much lower computation complexity than classic threshold

secret sharing, which has been verified by our comparisons

described later in Sect. 5. Thus, the computation complexity

of group key transfer can be significantly reduced. The

similar idea of using LSSS based on VandermondeMatrix to

achieve privacy was employed in [24, 28]. The major dif-

ference between these two schemes and ours is that our

scheme allows lower computation complexity only by

Vandermonde Matrix and one-way hash function, whereas

other two schemes have more extra computation complexity

by adding ElGamal encryption algorithm or CDH assump-

tion. The security strength of our schemewill be evaluated in

detail, as well as its communication, storage, and computa-

tion complexity. Aside from its low computation complex-

ity, this scheme also has low storage complexity, i.e., O(1)

for an individual groupmember andO(t) for the KGC,where

t is the number of group members. Comparisons are con-

ducted to show great reduction of our scheme in computation

complexity than using traditional threshold secret sharing.

Such a protocol is desirable for many wireless applications

where portable devices or sensors need to reduce their

computation as much as possible due to battery power lim-

itations. This protocol provides much lower computation

complexity while maintaining low and balanced communi-

cation complexity and storage complexity for secure group

key establishment.
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The rest of this paper is organized as follows: In the next

section, we provide some preliminaries. In Sect. 3, we

propose our group key transfer protocol. We analyze the

security of our proposed protocol in Sect. 4. Performance

evaluation of the proposed scheme is discussed in Sect. 5.

We conclude in Sect. 6.

2 Preliminaries

In this section we introduce some fundamental backgrounds.

In a secret sharing scheme, a secret s is divided into n

shares and shared among a set of n shareholders by a

mutually trusted dealer in such a way that authorized

subsets of shareholders can reconstruct the secret but

unauthorized subsets of shareholders cannot determine the

secret. If any unauthorized subset of shareholders can not

obtain any information about the secret, then the scheme is

called perfect. The set of authorized subsets of shareholders

is called access structure and the set of unauthorized sub-

sets of shareholders is called prohibited structure.

Formally, let P ¼ f1; . . .; ng be a set of shareholders, by

using Shannon’s entropy function we say that a scheme is a

secret sharing scheme with respect to access structure C, if
the following holds [25].

1. Correctness Any subset of shareholders supposed to

get s can compute s. Namely, for any A 2 C, it holds
H(S|A) = 0.

2. Security Any subset of shareholders not supposed to

get s can not reconstruct s, even if they pool all their

shares together. Namely, for any A 62 C, it holds

0\H(S|A) B H(S). In the case that H(S|A) = H(S),

shareholders in A pool their shares together obtain no

information on s. This is the case we are interested in,

and we say that this scheme is perfect.

For a perfect secret sharing scheme, we say that it is

ideal, if the shares of shareholders are taken from the same

domain as the secret (as proved in [3], this is the minimal

size of the shares); we say that it is linear, if the recon-

struction operations are linear [26].

Monotone span programs (MSP) is introduced as linear

models computing monotone Boolean functions by

Karchmer and Wigderson [27]. We denote an MSP by

MðK;M;wÞ, where M is a d 9 l matrix over a finite field

K and w:{1, …, d} ? {1, …, n} is a surjective labeling

map which actually distributes to each participant some

rows of M. We call d the size of the MSP. For any subset

A � P, there is a corresponding characteristic vector

d~A ¼ ðd1; . . .; dnÞ 2 f0; 1gn, where di = 1 if and only if

i 2 A. Consider a monotone Boolean function

f:{0, 1}n ? {0, 1} such that for any A � P and any

B ( A, f ðd~BÞ ¼ 1 implies f ðd~AÞ ¼ 1. We say that an MSP

MðK;M;wÞ computes the monotone Boolean function f

with respect to a target vector v~2 Klnfð0; . . .0Þg, if it

holds that v~2 spanfMAg if and only if f ðd~AÞ ¼ 1, where

MA consists of the rows r of M with w(r) 2 A and v~2
spanfMAg means that there exists a vector w~ such that

v~¼ w~MA.

Beimel [26] proved that devising a linear secret sharing

scheme (LSSS) for an access structure C is equivalent to

constructing an MSP computing the monotone Boolean

function fC such that fCðd~AÞ ¼ 1 if and only if A 2 C . It is

known that an MSP MðK;M;wÞ can compute fC if and

only if there exists a vector v~ which lies in the space
T

A2Cmin

P
i2A Vi �

S
B2Amax

P
i2B Vi, where Vi is the space

spanned by the row vectors of M distributed to participant i

according to w, and the vector v~ can be seen as the target

vector described above. Hence, finding the linear spaces Vi

such that
T

A2Cmin

P
i2A Vi �

S
B2Amax

P
i2B Vi 6¼ ; is a key

step to build an LSSS with respect to C.
LSSS based on Vandermonde Matrix is introduced by

Hsu et al. in [25]. Suppose that �V ¼ Knþ1 is the (n ? 1)

dimensional linear space over a finite field K. The char-

acteristic charðKÞ ¼ p and p is a safe large prime. Given a

basis {e1, …, en?1} of �V with e~i ¼ ð0; . . .; 0; 1
i
; 0; . . .; 0Þ 2

Knþ1 for 1 B i B n ? 1, the mapping v : K� ! �V defined

by vðxÞ ¼
Pnþ1

i¼1 xi�1ei ¼ ð1; x; x2; . . .; xnÞ is determined.

For xi 2 K(i 2 {1, …, n ? 1}), the Vandermonde Matrix

Vn?1 can be represented as follows

Vnþ1 ¼

vðx1Þ
vðx2Þ
. . .

vðxnþ1Þ

0

B
B
@

1

C
C
A ¼

1 x1 x21 . . . xn1
1 x2 x22 . . . xn1
. . . . . . . . . . . . . . .
1 xnþ1 x2nþ1 . . . xnnþ1

0

B
B
@

1

C
C
A

In LSSS based on Vandermonde Matrix, there are

(n ? 1) shareholders P = {P0, P1, …, Pn} and a mutually

trusted dealer D, and the scheme consists of two

algorithms:

1. Share generation algorithm the dealer D first picks a

Vandermonde Matrix Vn?1 and a random vector r ¼
ðr0; r1; r2; . . .; rnÞ 2 �V and let r be public, in which

the secret S = s0 ? s1 ? ��� ? sn and all computations

are performed in the finite field K, and D computes:

1 x1 x21 . . . xn1
1 x2 x22 . . . xn1
. . . . . . . . . . . . . . .
1 xnþ1 x2nþ1 . . . xnnþ1

0

B
B
@

1

C
C
A

r0
r1
. . .
rn

0

B
B
@

1

C
C
A ¼

s0
s1
. . .
sn

0

B
B
@

1

C
C
A

Then, the algorithm outputs a list of (n ? 1) shares

(x0, x1, …, xn) and distributes each share xi to corre-

sponding shareholder Pi secretly.
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2. Secret reconstruction algorithm this algorithm takes all

(n ? 1) shares (x0, x1, …, xn) and the public vector r

as inputs, and outputs the secret S = s0 ? s1 ? -

�� ? sn by computing each inner product

ðvðxiÞ; rÞ ¼ si.

We note that because every set of at most (t ? 1) vec-

tors of the form vðxÞ is linearly independent, the above

scheme satisfies the basic requirements of secret sharing

scheme as follows: (1) With knowledge of all (n ? 1)

shares, it can reconstruct the secret S easily; (2) With

knowledge of fewer than (n ? 1) shares, it cannot get any

information about the secret S. LSSS based on Vander-

monde Matrix is information-theoretically secure since the

scheme satisfies these two requirements without making

any computational assumption. For more information on

this scheme, readers can refer to the original paper [25].

3 The proposed protocol

We assume that there are t members in a group {1, …, t}.

In order to achieve secure group communication, the

group’s session keys are needed to be securely distributed

among all group members prior to exchanging communi-

cation messages. Typically, the deputy of KGC is to select

fresh session keys and securely distribute them to group

members, in a way that only group members can derive the

session key upon receiving the broadcasted messages. First

of all, each member is required to register at KGC. Then,

KGC makes records of all registered members, and

removes any unsubscribed members.

Our group key transfer protocol consists of pre-dis-

tributing phase and group key distributing phase. The

detailed description is as follows:

3.1 Pre-distributing phase

KGC selects a finite field K with the characteristic

charðKÞ ¼ p, where p is a safe large prime, constructs two

secure one-way hash functions h1ð�Þ and h2ð�Þ whose

codomains are both K. Then, each user i registers at KGC

and shares his long-term secret xi 2 K with KGC in a

secure manner. KGC publishes p, h1ð�Þ and h2ð�Þ.

3.2 Group key distributing phase

Upon receiving a group key generation request from any

user, KGC needs to randomly select a group key. KGC will

distribute this group key to all group members in a secure

and authenticated manner. All communications in dis-

tributing phase are in an open broadcast channel. For

example, we assume that a group consists of t members,

{1, …, t}, and the shared secrets are x1, x2, …, xt. The key

generation and distribution process contains five steps.

• Step 1 The initiator sends a key generation request to

KGC with a list of group members as {1, …, t}.

• Step 2 KGC broadcasts the list of all group members,

{1, …, t}, as a response.

• Step 3 Each participating group member needs to send a

random challenge, ri 2 K, to KGC.

• Step 4 KGC randomly selects a group key S 2 K
(S =

P
1BiBtsi) and a random value r0 2 K. KGC also

computes t additional values, ui for i = 1, …, t, and the

value of Auth = h2(S, 1, …, t, r0, r1, …, rt, u1, …, ut),

in which the vector r ¼ ðr0; ri; . . .; rtÞ 2 Ktþ1 and the

inner product ðvðxi � h1ðxi; ri; r0ÞÞ; rÞ ¼ si and

ui ¼ ðS� siÞmod p. We define that x � y denotes

xþ y ðmodpÞ. KGC broadcasts {Auth, r0, ui}, for

i = 1, …, t, to all group members. All computations

are performed in Z�
p .

• Step 5 For each group member, i ði 2 f1; . . .; tgÞ,
knowing the public value, ui, is able to compute the

inner product ðvðxi � h1ðxi; ri; r0ÞÞ; rÞ ¼ si and recover

the group key S ¼ ðui þ siÞmod p. Then, i computes

h2(S, 1, …, t, r0, r1, …, rt, u1, …, ut) and checks

whether this hash value is identical to Auth. If these

two values are identical, i authenticates the group key is

sent from KGC.

Remark 1 The conventional group key transfer protocols

based on threshold secret sharing schemes need to compute

a t-degree interpolating polynomial to distribute and

recover group keys. Actually, this approach can cause an

increase of computational complexity. To overcome these

drawbacks, in this paper, we construct a group key transfer

protocol by a linear secret sharing based on Vandermonde

Matrix, which is no need to compute a t-degree interpo-

lating polynomial and only require that each member

compute an inner product of two vectors to recover the

group key.

4 Security analysis

In this section, we analyze that the proposed protocol has

the following security advantages:

1. This protocol achieves security feathers with key

freshness, key confidentiality and key authentication.

2. This protocol can resist the attacks in both synchronous

and asynchronous networks.

3. Both the backward secrecy and the forward secrecy of

group communication are maintained. i.e., the newly

joined members cannot recover the communications of
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the old sessions, and those old members who left the

group cannot access the current session.

4. Both the outside attacker and the inside attacker are

prevented. i.e., the outside attacker cannot recover the

group key, and the inside attacker can recover the

secret group key but cannot recover other member’s

secret shared with KGC.

Theorem 1 The proposed protocol achieves the security

feathers with key freshness, key confidentiality and key

authentication.

Proof Key freshness is ensured by KGC since a random

group key is selected by KGC for each service request. In

addition, the equation S ¼ ðui þ siÞmod p used to recover

the group key, where si ¼ ðvðxi � h1ðxi; ri; r0ÞÞ; rÞ is a

function of random challenge ri selected by each group

member and random value r0 selected by KGC.

Key confidentiality is provided due to the security fea-

tures of LSSS based on Vandermonde Matrix. KGC ran-

domly selects a group key S and makes t values,

ui ¼ ðS� siÞmod p for i = 1, …, t, publicly known. For

each authorized group member, including the secret xi
shared with KGC, he/she knows the inner product

ðvðxi � h1ðxi; ri; r0ÞÞ; rÞ ¼ si. Thus, any authorized group

member is able to recover the secret group key

S ¼ ðui þ siÞmod p. However, for any unauthorized

member (or outsider), there are only t values ui ¼ ðS�
siÞmod p for i = 1, …, t available and he obtains no

information on si,
P

1BiBtsi and S since S =
P

1BiBtsi.

Thus, unauthorized member knows nothing about the

group key. This property is unconditionally secure since

there has no other computational assumption based upon.

Key authentication is provided through the value Auth in

step 4. Auth is a one-way hash output with the secret group

key and all members’ random challenges as input. Since

the group key is known only to authorized group members

and KGC, unauthorized members cannot forge this value.

Any insider also cannot forge a group key without being

detected since the group key is a function of each mem-

ber’s long-term secret xi. In addition, any replay of

{Auth, r0, ui}, for i = 1, …, t, of KGC in step 4 can be

detected since the group key is a function of random

challenge ri selected by each group member and random

value r0 selected by KGC.

Theorem 2 The proposed protocol can resist the attacks

in both synchronous and asynchronous networks.

Proof In our proposed solution, each user needs not to

release a value based on his long-term secret xi. Group key

reconstruction is based on all released values from KGC.

There are only t values ui ¼ ðS� siÞmod p for

i = 1, …, t and Auth, r0 available. Even if values are

released asynchronously, attackers can not obtain any

‘‘good’’ information last after knowing all released values

from KGC, which will be analyzed in Theorems 4 and 5.

Theorem 3 The proposed protocol achieves the back-

ward secrecy and the forward secrecy. i.e., the newly

joined members cannot recover the old group keys, and

those old members who left the group cannot access the

current group key.

Proof For every session, whenever some new members

join or some old members leave a group, the KGC needs to

distribute a new group key to all the current group mem-

bers. In each session, the group key is a function of each

current group member’s long-term secret xi and the fresh

random vector r ¼ ðr0; ri; . . .; rtÞ determined both by each

current group member and KGC. Namely, the newly joined

members can recover the current group key but cannot

recover the previous group keys, and those old members

who have left the group cannot recover the current group

key. Hence, our protocol achieves both the backward

secrecy and the forward secrecy of group communication.

In group key transfer, adversaries can be categorized

into two types. The first type of adversaries is outsiders of a

particular group. The outside attacker can try to recover the

secret group key belonging to a group that the outsider is

unauthorized to know. This attack is related to the confi-

dentiality of group key. In our proposed protocol, anyone

can send a request to KGC for requesting a group key

service. The outside attacker may also impersonate a group

member to request a group key service. In security analy-

sis, we will show that the outside attacker gains nothing

from this attack since the attacker cannot recover the group

key. The second type of adversaries is insiders of a group

who are authorized to know the secret group key; but inside

attacker attempts to recover other member’s secret shared

with KGC. Since any insider of a group is able to recover

the same group key, we need to prevent inside attacker

knowing other member’s secret shared with KGC.

Theorem 4 (outsider attack) Assume that an attacker

who impersonates a group member for requesting a group

key service, then the attacker can neither obtain the group

key nor share a group key with any group member.

Proof Although any attacker can impersonate a group

member to issue a service request to KGC without being

detected and KGC will respond by sending group key

information accordingly; however, the group key can only be

recovered by any group member who shares a secret with

KGC. This security feature is unconditionally secure, which

is ensured by the LSSS based on Vandermonde Matrix.

If the attacker tries to reuse a compromised group key

by replaying previously recorded key information from
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KGC, this attack cannot succeed in sharing this compro-

mised group key with any group member since the group

key is a function of random vector r ¼ ðr0; ri; . . .; rtÞ
determined both by each member and KGC. Namely, a

compromised group key cannot be reused since the

random vector r ¼ ðr0; ri; . . .; rtÞ is different in each

session.

Theorem 5 (insider attack) Assume that the protocol runs

successfully many times, then the secret xi 2 K of each

group member shared with KGC remains unknown to all

other group members (and outsiders).

Proof For a group key service request, KGC randomly

selects a group key S and makes t values, ui ¼ ðS� siÞmod

p for i = 1, …, t, publicly known. For each authorized

group member, with knowledge of the secret shared with

KGC and t public information, he/she knows ui and is able

to compute the inner product ðvðxi � h1ðxi; ri; r0ÞÞ; rÞ ¼ si.

Thus, any authorized group member is able to reconstruct

the group key S ¼ ðui þ siÞmod p, where the vector

r ¼ ðr0; ri; . . .; rtÞ. However, the secret xi 2 K of each

group member shared with KGC remains unknown to

outsiders.

In our proposed protocol, group key service requests

from group members are not authenticated. An adversary

(insider) can make several service requests to KGC and

forge challenges of the target group member. For example,

the adversary makes a service request for a group con-

taining the adversary and the target group member. The

adversary also forges the challenge of the target group

member for this service. The KGC generates the group key

S. Then, the adversary is able to reconstruct the group key.

At the same time, the adversary can obtain the inner pro-

duct ðvðxtarget � h1ðxtarget; rtarget; r0ÞÞ; rÞ ¼ starget from

starget ¼ ðS� utargetÞmod p. However, the adversary has no

idea about h1(xtarget, rtarget, r0) even if rtarget has been

intercepted, since xtarget is only known by the target group

member and KGC. Alternatively, the adversary has no

chance of getting any valid information about xtarget with

the equation ðvðxtarget � h1ðxtarget; rtarget; r0ÞÞ; rÞ ¼ starget.

Therefore, the proposed protocol resists against insider

attack, i.e., although an authorized member can derive the

group key S, he can not obtain other member’s long-term

secret.

If the attacker tries to impersonate the target group

member by reusing previously recorded information, i.e., the

inner product ðvðxtarget � h1ðxtarget; rtarget; r0ÞÞ; rÞ ¼ starget,

this attack cannot succeed since starget is a function of ran-

dom values rtarget and r0. Even if the adversary can replay

the challenge rtarget of the target group member, he cannot

reuse r0 since r0 randomly selected by KGC is different in

each session.

5 Performance evaluation

In this section, we will firstly compare our scheme with

public-key-based key distribution protocols. Then, we

compare ours with a threshold secret-sharing-based key

distribution protocol [23] proposed recently, in terms of

storage requirement, communication and computational

costs will be discussed in detail.

5.1 Comparison 1

Compared with the public-key-based key distribution pro-

tocols, our scheme has the following advantages:

(a) Instead of using public key encryptions in which the

security is based on computation assumptions, we

use the secret sharing as a tool of broadcast

encryption in which the security is unconditionally

secure. In addition, instead of doing encryption one

at a time, our scheme can perform encryption all at

once to reduce computational complexity.

(b) The public-key-based key distribution protocol

requires larger rekeying overheads when any mem-

bership of user has changed since broadcasting keys

need to be updated. But our scheme uses secret

sharing and KGC can manage any membership

change efficiently. There is no rekeying issue.

(c) Since computation in our scheme uses a smaller

modulus (say 160 bits only) as compared with public-

key computations using a larger modulus (say 1024

bits at least in RSA), computations in our scheme are

much faster than public-key computations.

5.2 Comparison 2

Suppose that a set of users is {1, …, n} and the group is

{1, …, t}, where n C t and t C 2. The performance eval-

uation is as follow.

5.2.1 Time complexities

Let TM, TI and TH be execution time for performing a

modular multiplication, a modular inverse and a one-way

hash function, respectively. As compared to TM or TI, the

time for performing modular addition or subtraction

required in the proposed scheme can be ignored.

The proposed protocol Given the shared secrets

x1, x2, …, xt, a group key S 2 K and the vector

r ¼ ðr0; ri; . . .; rtÞ 2 Ktþ1, the time complexity for dis-

tributing the group key by KGC is t 9 2t 9 TM ? 2TH.

The time complexity for recovering the group key by each

group member is 2t 9 TM ? 2TH, where computing the
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inner product ðvðxi � h1ðxi; ri; r0ÞÞ; rÞ ¼ si needs 2t 9

TM ? TH.

Harn’s protocol Given the shared secrets (xi, yi), a group

key k and the random challenge Ri for 1 B i B t, the time

complexity for distributing the group key by KGC is

t 9 (t ? 1) 9 t 9 (TM ? TI) ?TH. The time complexity

for recovering the group key by each group member is

(t ? 1) 9 t 9 (TM ? TI) ? TH.

Computational comparison of the proposed protocol and

Harn’s protocol is shown in Table 1. From Table 1, as

compared with Harn’s protocol, the proposed protocol

LSSS based on Vandermonde Matrix causes a significant

decrease of the computational complexity.

5.2.2 Communication costs

The communication costs required in the proposed protocol

are measured by the total volume of data transmission

during pre-distributing phase and group key distributing

phase, respectively. In our protocol, |p| is the size of the

adopted finite field Z�
p and |H| is the output size of one-way

hash function. Obviously, the communication cost for user

registration is n|p|. The communication cost for group key

generation and distribution is t|p| ? (t ? 1)|p| ? |H|.

In Harn’s protocol, for the same number n of users, the

communication costs required in user registration is 2n|pq|

and the communication cost for group key generation and

distribution is t|pq| ? 2t|pq| ? |H|.

Comparison of communication costs between the pro-

posed protocol and Harn’s protocol is shown in Table 2. It

can be seen that in the proposed protocol, the communi-

cation costs required can be significantly reduced.

5.2.3 Storage complexities

In the proposed protocol, each user i registers at KGC and

shares his long-term secret xi 2 K with KGC in a secure

manner. Storage complexities are O(1) for an individual

group member and O(t) for the KGC, where t is the number

of group members. In Harn’s protocol, during registration

KGC shares a secret (xi, yi) with each user i, where

xi; yi 2 Z�
pq. As compared with Harn’s protocol, the pro-

posed protocol LSSS based on Vandermonde Matrix cau-

ses a half decrease of the storage complexity.

6 Conclusions

We have proposed a computation-efficient group key

transfer protocol by LSSS based on Vandermonde Matrix.

This protocol drastically reduces the computation load of

each group member compared to existing schemes

employing traditional secret sharing. Such a protocol is

desirable for many wireless applications. The

security strength of this scheme is evaluated in detail, as

well as its communication, storage, and computation

complexity.
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