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In a secret-sharing scheme, the secret is shared among a set of shareholders, and it can be reconstructed if a quorum of these
shareholders work together by releasing their secret shares. However, in many applications, it is undesirable for nonshareholders to
learn the secret. In these cases, pairwise secure channels are needed among shareholders to exchange the shares. In other words, a
shared key needs to be established between every pair of shareholders. But employing an additional key establishment protocol may
make the secret-sharing schemes significantly more complicated. To solve this problem, we introduce a new type of secret-sharing,
called protected secret-sharing (PSS), in which the shares possessed by shareholders not only can be used to reconstruct the original
secret but also can be used to establish the shared keys between every pair of shareholders. Therefore, in the secret reconstruction
phase, the recovered secret is only available to shareholders but not to nonshareholders. In this paper, an information theoretically
secure PSS scheme is proposed, its security properties are analyzed, and its computational complexity is evaluated. Moreover, our
proposed PSS scheme also can be applied to threshold cryptosystems to prevent nonshareholders from learning the output of the
protocols.

1. Introduction

Secret-sharing schemes, first introduced by Shamir [1] and
Blakley [2] in 1979, are very important techniques to ensure
secrecy and availability of sensitive information. Moreover,
they are widely used as building blocks in various crypto-
graphic protocols, such as threshold cryptosystems, attribute-
based encryption, and multiparty computation. In a (𝑡, 𝑛)
threshold secret-sharing scheme, the secret is divided into 𝑛
shares so that it can only be recovered with 𝑡 or more than 𝑡
shares, but fewer than 𝑡 shares cannot reveal any information
of the secret. In the past few decades, many secret-sharing
schemes have been proposed in the literature, and threemajor
approaches can be used to design them: Shamir’s approach [1]
based on the univariate polynomial, Blakely’s approach [2]
based on the hyperplane geometry, and Mignotte/Asmuth-
Bloom approach [3, 4] based on the Chinese Remainder
Theorem (CRT).

In the majority of existing secret-sharing schemes, it is
simply assumed that shares are released by the shareholders

in the secret reconstruction phase, and then anyone can
reconstruct the secret using these revealed shares. But, in
many cases, it is undesirable for nonshareholders to learn the
secret. Considering the scenario where a famous billionaire
sets up the will and shares it among his children using
secret-sharing, the children are told that the will should
not be read when the billionaire is alive and its contents
should be kept strictly private among the family members.
However, some paparazzi may want to learn the will after
the billionaire passes away to make some head news. In
this case, traditional secret-sharing schemes may not provide
sufficient protection. To solve this problem, shareholders can
use pairwise secure channels to exchange the shares so that
the recovered secret is only available to shareholders but
not to nonshareholders. If these secure channels are built
using cryptographic methods, a shared key is required to be
established between every pair of shareholders beforehand.
However, employing an additional key establishment proto-
col may make the secret-sharing schemes significantly more
complicated.
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The same problem also arises if secret-sharing schemes
are used as building blocks in some other cryptographic pro-
tocols. For example, threshold cryptography, first introduced
by Desmedt [5], is the application of secret-sharing with
public-key algorithms. Among various threshold cryptosys-
tems, some are based on ElGamal [6, 7], some are based on
RSA [8–11], some are based on Elliptic Curves [12, 13], and
some are based on Pairing [14]. In these protocols, shares are
either used to generate a digital signature or used to decrypt a
ciphertext. To prevent any nonshareholder from learning the
outputs of the protocol, a shared key is also needed between
every pair of shareholders. Similarly, employing an additional
key establishment protocol in threshold cryptosystems can
complicate the process significantly.

In this paper, we use bivariate polynomials to propose
a new type of secret-sharing scheme, called protected secret-
sharing (PSS), in which shareholders can use their shares to
achieve two purposes simultaneously: one is to reconstruct
the original secret and the other is to establish a shared key
between every pair of shareholders. Using these shared keys,
shareholders can build pairwise secure channels among them
to exchange the shares in the secret reconstruction phase.
Therefore, PSS provides an efficient solution to protect the
original secret from nonshareholders. Our proposed scheme
is information theoretically secure, and it can be easily
extended to threshold cryptosystems for the same purpose.

Note that although bivariate polynomials have been used
to design many different types of secret-sharing schemes in
the literature, for example, verifiable secret-sharing (VSS)
[15–17], pairwise key distribution [18–21], and dynamic
secret-sharing [22], the purpose of this work is different
from the previous ones, and the types of employed bivariate
polynomials are different as well.

The rest of paper is organized as follows. In Section 2, we
review some secret-sharing schemes based on polynomials.
In Section 3, we present the models for PSS, including
the system model, the adversary model, and the security
goals. Our proposed (𝑡, 𝑛) PSS scheme based on bivariate
polynomials is introduced in Section 4. Its security and
complexity analysis is described in Section 5. Finally, we
conclude the paper in Section 6.

2. Review of Secret-Sharing Schemes
Based on Polynomials

Shamir’s (𝑡, 𝑛) secret-sharing scheme [1] is based on uni-
variate polynomials. The dealer first randomly selects a
polynomial 𝑓(𝑥) overZ𝑝 with degree at most 𝑡−1, where 𝑠 =
𝑓(0) is the secret. Then the dealer evaluates the polynomial
𝑓(𝑥) at different points 𝑤𝑖 to generate the shares 𝑓(𝑤𝑖) for
𝑖 = 1, 2, . . . , 𝑛. Here, 𝑝 is a large prime with 𝑝 > 𝑠, and 𝑤𝑖 is
some public information associated with each shareholder. In
what follows in this paper, we assume that all computations
are modulo 𝑝 unless otherwise stated.

In 1985, Chor et al. [23] have extended the notion of
secret-sharing and they have proposed the first verifiable
secret-sharing (VSS) scheme.Theverifiability property allows
shareholders to verify the validity of their received shares.
If invalid shares were found, shareholders can request the

dealer to regenerate new shares. In the literature, several
(𝑡, 𝑛)VSS schemes [15, 16, 24–27] are designed using bivariate
polynomials. A bivariate polynomial with degree at most 𝑡−1
can be represented as

𝐹 (𝑥, 𝑦) = 𝑎0,0 + 𝑎1,0𝑥 + 𝑎0,1𝑦 + ⋅ ⋅ ⋅ + 𝑎𝑡−1,𝑡−1𝑥
𝑡−1𝑦𝑡−1, (1)

where 𝑎𝑖,𝑗 ∈ Z𝑝,∀𝑖, 𝑗 ∈ [0, 𝑡−1]. If the coefficients satisfy 𝑎𝑖,𝑗 =
𝑎𝑗,𝑖, ∀𝑖, 𝑗 ∈ [0, 𝑡 − 1], such a polynomial is called a symmetric
bivariate polynomial. Otherwise, it is called an asymmetric
bivariate polynomial. In these VSS schemes, the dealer uses
a symmetric bivariate polynomial 𝐹(𝑥, 𝑦) to generate shares
𝐹(𝑤𝑖, 𝑦) for the shareholders, where 𝑖 = 1, 2, . . . , 𝑛. Each
share 𝐹(𝑤𝑖, 𝑦) is a univariate polynomial with degree at most
𝑡 − 1. Note that since 𝐹(𝑤𝑖, 𝑤𝑗) = 𝐹(𝑤𝑗, 𝑤𝑖), ∀𝑖, 𝑗 ∈ [1, 𝑛], a
pairwise key 𝑘𝑖𝑗 = 𝐹(𝑤𝑖, 𝑤𝑗) = 𝐹(𝑤𝑗, 𝑤𝑖) can be established
between the shareholders 𝑈𝑖 and 𝑈𝑗. Therefore, a symmetric
bivariate polynomial can enable two shareholders to establish
a pairwise shared key.

3. Models for Protected Secret-Sharing

3.1. System Model

Definition 1 (protected secret-sharing (PSS)). In a PSS, the
received shares by shareholders can be used to serve two
purposes simultaneously: (a) reconstruct the original secret
and (b) establish pairwise shared keys among shareholders
(note that these pairwise shared keys are used to build a
secure channel between every pair of shareholders in order
to exchange the shares in the secret reconstruction phase.
Therefore, the reconstructed secret can be protected from any
nonshareholder).

The players in our proposed scheme include a trusted
dealer D, 𝑛 shareholders {𝑈1, 𝑈2, . . . , 𝑈𝑛}, and some insider
or outsider adversaries. We assume that all these players have
unlimited computational power. Among the 𝑛 shareholders,
at least a portion 𝜖 of them are assumed to be honest.

We assume that there exists a secure channel between
the dealer and every shareholder, so that the shares can be
securely distributed to shareholders. Moreover, we assume
that every player is connected to a common authenticated
broadcast channelC, so that anymessage sent throughC can
be heard by the other players. The adversaries cannot modify
messages sent by anhonest player throughC, and they cannot
prevent honest players from receivingmessages fromC. Note
that these assumptions are widely used in existing secret-
sharing schemes. With these assumptions, we can focus
our discussion on the key aspects of PSS without digging
into the low level of technical details. Our purpose is to
provide an efficient way to establish additional pairwise secret
channels among shareholders without invoking a separate
key establishment protocol.

Our proposed PSS scheme consists of two phases: (i)
share generation and distribution by the dealer and (ii) secret
reconstruction by shareholders. During the share genera-
tion and distribution phase, the dealer selects a random
asymmetric bivariate polynomial to generate the shares for
each shareholder, and every share consists of two univariate
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polynomials. These shares are sent to shareholders through
the secure channels. During the secret reconstruction phase,
each shareholder first uses her share to compute pairwise
shared keys with the other shareholders. With these shared
keys, pairwise secure channels can be established among the
shareholders. After receiving the shares from the other share-
holders through these secure channels, each shareholder
can recover the original secret without leaking it to any
nonshareholder.

3.2. Adversary Model. We consider two types of adversaries
in the proposed PSS scheme.

(i) Insider Adversary. The insider adversary is a legitimate
shareholder who owns a share generated by the dealer. An
insider adversary may work alone or collude with some other
insider adversaries to learn the secret before it is supposed to
be reconstructed or to recover invalid secret using fake shares.
Note that when the secret is reconstructed, we assume that
the insider adversaries can learn the secret, but they will not
leak the secret to nonshareholders, for example, the outsider
adversaries.

(ii) Outsider Adversary. The outsider adversary is an attacker
who does not own any share generated by the dealer, but
she may try to learn the secret that she is unauthorized to
access. Note that this attack is possible in many existing
secret-sharing schemes when the shares are exchanged in an
insecure fashion during the secret reconstruction phase.

3.3. Security Goals. In the security analysis, we demonstrate
that the following security goals are satisfied in the proposed
PSS scheme based on our assumptions.

Definition 2 (correctness). If there exist a portion 𝜖 > 2/3
of honest shareholders, the correct secret can always be
reconstructed. And any insider adversary who uses fake share
in the share reconstruction phase can be identified.

Definition 3 (secrecy). If there exist a portion 𝜖 > 1/2 of
honest shareholders, the insider adversaries cannot learn any
information of the secret before the secret is supposed to be
reconstructed. Moreover, in the secret reconstruction phase,
the traffic flows over the broadcast channel C reveal no
information of the secret to the outsider adversary.

Note that the proposed PSS scheme aims to achieve
information theoretical security. Hence, both of the above
security goals do not rely on any computational assumption.

4. The Proposed PSS Scheme

In this section, we propose a (𝑡, 𝑛) PSS scheme using asym-
metric bivariate polynomials.There are twomajor differences
between shares generated by a univariate polynomial and by a
bivariate polynomial: (1) the shares generated by a univariate
polynomial are integers in Z𝑝, but shares generated by a
bivariate polynomial are univariate polynomials over Z𝑝; (2)
the shares generated by a univariate polynomial can only be
used to reconstruct the secret, but the shares generated by a

bivariate polynomial not only can be used to reconstruct the
secret but also can be used to establish pairwise keys among
shareholders.

4.1. Share Generation and Distribution Phase. At first, the
dealerD selects a random asymmetric polynomial:

𝐹 (𝑥, 𝑦) = 𝑎0,0 + 𝑎1,0𝑥 + 𝑎0,1𝑦 + ⋅ ⋅ ⋅ + 𝑎𝑡−1,ℎ−1𝑥
𝑡−1𝑦ℎ−1, (2)

where 𝐹(𝑥, 𝑦) is with degree at most 𝑡 − 1 in 𝑥 and with
degree at most ℎ − 1 in 𝑦 (i.e., ℎ > 𝑡(𝑡 − 1); we will
explain this condition in the security analysis), where 𝑠 =
𝐹(0, 0) is the secret, 𝑎𝑖,𝑗 ∈ Z𝑝, and 𝑝 is a large prime
integer with 𝑝 > 𝑠. The dealer D computes a pair of shares
𝑠1𝑖 (𝑦) = 𝐹(𝑤𝑖, 𝑦) and 𝑠

2
𝑖 (𝑥) = 𝐹(𝑥, 𝑤𝑖) for each shareholder

𝑈𝑖, where 𝑤𝑖 is the public information associated with the
corresponding shareholder 𝑈𝑖. The dealer sends the pair
of shares {𝑠1𝑖 (𝑦), 𝑠

2
𝑖 (𝑥)} to each shareholder 𝑈𝑖 through the

secure channel.

4.2. Secret Reconstruction Phase. Without loss of generality,
assume that 𝑢 (i.e., 𝑡 ≤ 𝑢 ≤ 𝑛) shareholders {𝑈1, 𝑈2, . . . , 𝑈𝑢}
are participating in the secret reconstruction phase:

(1) Between every pair of shareholders, they compute two
shared keys. For example, the shareholders 𝑈𝑖 and 𝑈𝑗
(i.e., we assume that 𝑖 < 𝑗) can compute the shared
keys as 𝑘𝑖,𝑗 = 𝑠

1
𝑖 (𝑤𝑗) = 𝑠

2
𝑗(𝑤𝑖) = 𝐹(𝑤𝑖, 𝑤𝑗) and 𝑘𝑗,𝑖 =

𝑠2𝑖 (𝑤𝑗) = 𝑠
1
𝑗(𝑤𝑖) = 𝐹(𝑤𝑗, 𝑤𝑖).

(2) Each shareholder 𝑈𝑖 then uses her share 𝑠1𝑖 (𝑦) to
compute a Lagrange Component 𝛿𝑖 as

𝛿𝑖 = 𝑠
1
𝑖 (0)

𝑢

∏
𝑗=1,𝑗 ̸=𝑖

−𝑤𝑗
𝑤𝑖 − 𝑤𝑗

(mod𝑝) . (3)

(3) For each pair of shareholders, they use their shared
keys to build a secure channel and then use this
channel to exchange their Lagrange Components. For
example, the shareholder 𝑈𝑖 computes 𝑐𝑖,𝑗 = 𝐸𝑘𝑖,𝑗(𝛿𝑖),
where 𝐸𝑘𝑖,𝑗(𝛿𝑖) denotes the one-time pad encryption
of 𝛿𝑖 using the key 𝑘𝑖,𝑗, and sends 𝑐𝑖,𝑗 to the shareholder
𝑈𝑗 through the authenticated broadcast channel C.
Similarly, 𝑈𝑗 encrypts her share 𝛿𝑗 by one-time pad
using the shared key 𝑘𝑗,𝑖 and sends 𝑐𝑗,𝑖 to 𝑈𝑖 using the
authenticated channelC.

(4) After receiving the ciphertexts 𝑐𝑗,𝑖 for 𝑗 ∈ {1, 2, . . . , 𝑢}\
{𝑖}, the shareholder 𝑈𝑖 can decrypt them individually
as 𝐷𝑘𝑗,𝑖(𝑐𝑗,𝑖) = 𝛿𝑗, where 𝐷𝑘𝑗,𝑖(𝑐𝑗,𝑖) denotes the
decryption of 𝑐𝑗,𝑖 using the key 𝑘𝑗,𝑖.

(5) Finally, each shareholder𝑈𝑖 computes the secret as 𝑠 =
∑𝑢𝑗=1 𝛿𝑗.

5. Security and Complexity Analysis

In this section, we first prove the correctness and secrecy
of the proposed scheme; that is, neither type of adver-
saries can achieve its objectives based on our assumptions.
Then, we briefly analyze the complexity of the proposed
scheme.
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5.1. Security Analysis

Theorem 4. The proposed scheme achieves the correctness
property. That is, if there exist a portion 𝜖 > 2/3 of honest
shareholders, the correct secret can always be reconstructed.
And any dishonest shareholder who uses fake share in the share
reconstruction phase can be identified.

Proof. To prove this theorem, we first consider the situation
that there are no dishonest shareholders. Then we justify
why less than a portion of 1/3 dishonest shareholders cannot
prevent the correct secret from being reconstructed. In step 2
of the secret reconstruction phase, each shareholder 𝑈𝑖 uses
her share 𝑠1𝑖 (𝑦) to compute the Lagrange Component of the
secret 𝑠 as

𝛿𝑖 = 𝑠
1
𝑖 (0)

𝑢

∏
𝑗=1,𝑗 ̸=𝑖

−𝑤𝑗
𝑤𝑖 − 𝑤𝑗

= 𝐹 (𝑤𝑖, 0)
𝑢

∏
𝑗=1,𝑗 ̸=𝑖

−𝑤𝑗
𝑤𝑖 − 𝑤𝑗

. (4)

Since 𝐹(𝑥, 0) is a univariate polynomial with degree at most
𝑡 − 1, the secret 𝑠 can be obtained in step 5 through Lagrange
Interpolation as

𝑠 = 𝐹 (0, 0) =
𝑢

∑
𝑖=1

𝐹 (𝑤𝑖, 0)
𝑢

∏
𝑗=1,𝑗 ̸=𝑖

−𝑤𝑗
𝑤𝑖 − 𝑤𝑗

. (5)

Therefore, if all shareholders are honest, the correct secret
can be reconstructed. However, if there exist some dishonest
shareholders, they may use fake shares in the secret recon-
struction phase. In the proposed PSS scheme, the secret can
be reconstructed by any subset of 𝑡 or more than 𝑡 sharehold-
ers. Hence, we assume that there are at most 𝑡 − 1 dishonest
shareholders. Otherwise, the dishonest shareholders working
together will have the ability to reconstruct the secret. In this
case, any polynomial 𝐹(𝑥, 0) that passes 𝑛 points agrees at
most 𝑡 − 1 points and it disagrees at least 𝑛 − 𝑡 + 1 points.
In other words, these polynomials have a Hamming distance
𝑛 − 𝑡 + 1, and this distance can correct any number of errors
that is less than (𝑛 − 𝑡 + 1)/2 according to Coding Theory.
Therefore, if 𝑡−1 < (𝑛− 𝑡+1)/2, the correct secret can always
be reconstructed. Note that 𝑡 − 1 < 𝑛/3 is another form of
this inequality. To speed up the decoding process, either the
Euclidean decoder or the Berlekamp-Massey decoder can be
used.Moreover, if the correct secret is determined, the invalid
shares can be identified as well. This is because any subset
that contains invalid shares will interpolate into an incorrect
secret.

Theorem5. Theproposed scheme satisfies the secrecy property.
That is, the outsider adversaries cannot obtain any information
of the secret. Moreover, if there exist a portion 𝜖 > 1/2 of honest
shareholders and the condition ℎ > 𝑡(𝑡 − 1) holds, then 𝑡 or
more than 𝑡 shares can recover the secret, but fewer than 𝑡 shares
cannot reveal any information of the secret.

Proof. Although the shareholders exchange information
through the authenticated broadcast channel C in the secret
reconstruction phase, all messages are encrypted. Based on
the assumption that the asymmetric polynomial is randomly

selected overZ𝑝 by the dealerD, themessages and the shared
keys are all randomly distributed within the same space
Z𝑝. Moreover, since the messages are exchanged only once,
one-time pad can be used here to encrypt these messages.
Therefore, even if the outsider adversary has unlimited
computational power, she cannot obtain any information
of the secret. Next, we prove that if 𝜖 > 1/2 and ℎ >
𝑡(𝑡 − 1), the insider adversaries cannot learn the secret
before it is reconstructed. Regarding the first inequality, it
just simply states that there should be a majority of honest
shareholders.Otherwise, the dishonest shareholderswill have
all the abilities that the honest ones have, that is, reconstruct
the secret. Note that this requirement is widely used in most
of the existing secret-sharing schemes. Regarding the second
inequality, recall that the polynomial𝐹(𝑥, 𝑦) is an asymmetric
polynomial of degree 𝑡 − 1 in 𝑥 and degree ℎ − 1 in 𝑦. It
contains 𝑡ℎdifferent coefficient. In the proposed scheme, each
share {𝑠1𝑖 (𝑦), 𝑠

2
𝑖 (𝑥)} contains two univariate polynomials with

degree ℎ − 1 in 𝑦 and degree 𝑡 − 1 in 𝑥, respectively. In
other words, each shareholder can use her share to establish
at most 𝑡 + ℎ linearly independent equations in terms of the
coefficients of the bivariate polynomial 𝐹(𝑥, 𝑦). When there
are 𝑡−1 colluded shareholders with their shares together, they
can establish a total of (𝑡 + ℎ)(𝑡 − 1) linearly independent
equations. If the number of coefficients of the bivariate
polynomial 𝐹(𝑥, 𝑦) is larger than the number of equations
available to the colluded shareholders, that is, 𝑡ℎ > (𝑡 +
ℎ)(𝑡 − 1), the 𝑡 − 1 dishonest shareholders cannot recover
𝐹(𝑥, 𝑦). Hence, they cannot learn any information of the
secret. Therefore, these two inequalities together ensure that
fewer than 𝑡 shares cannot reveal any information of the
secret.

5.2. Complexity Analysis. In this section, we analyze the
complexity of our proposed scheme and compare it with
the one in Shamir’s secret-sharing scheme. Regarding the
share generation and distribution phase, in our proposed PSS
scheme, each share {𝑠1𝑖 (𝑦), 𝑠

2
𝑖 (𝑥)} consists of two univariate

polynomials: one is 𝑡 − 1 degree in 𝑥 and the other is ℎ − 1
degree in 𝑦. Therefore, 𝑡 + ℎ coefficients in Z𝑝 need to be
transmitted from the dealer to each shareholder, and each
shareholder needs to store these coefficients. The storage
requirement for each shareholder is (𝑡 + ℎ)log2𝑝 bits, where
𝑝 is the modulus. In Shamir’s secret-sharing scheme, each
share is a single value in Z𝑝. Therefore, only one value in Z𝑝
needs to be transmitted from the dealer to each shareholder,
and the storage requirement for each shareholder is log2𝑝
bits. Note that, when evaluating the polynomials, Horner’s
algorithm can be used to reduce the computational cost in
both our proposed scheme and in Shamir’s secret-sharing
scheme.

Regarding the secret reconstruction phase, in step 1, each
shareholder needs to compute pairwise shared keys with
the other shareholders. Note that this step does not involve
any interaction. Using Horner’s algorithm, evaluating the
polynomials of degree ℎ − 1 and degree 𝑡 − 1 requires
ℎ steps and 𝑡 steps, respectively, where each step consists
of one multiplication and one addition. In step 2, each



Security and Communication Networks 5

shareholder needs to compute 𝛿𝑖 = 𝑠
1
𝑖 (0)∏

𝑢
𝑗=1,𝑗 ̸=𝑖(−𝑤𝑗/(𝑤𝑖 −

𝑤𝑗)). Since 𝑠
1
𝑖 (0) is the constant coefficient of the polynomial

𝑠1𝑖 (𝑦), there is no need to compute this value. Therefore,
the computational cost of evaluating 𝛿𝑖 is identical to that
in Shamir’s secret-sharing scheme. Finally, there are 𝑢 − 1
one-time pad encryptions in step 3 and 𝑢 − 1 one-time pad
decryptions in step 4.

Based on the above analysis, the computational com-
plexities are similar in both schemes. But, compared with
Shamir’s secret-sharing scheme, more information needs
to be transmitted and stored by each shareholder in our
proposed scheme. The price is paid to achieve an addi-
tional property that the recovered secret is not revealed
to nonshareholders. This property is desirable in many
applications and our proposed scheme achieves it even if the
adversaries have unlimited computational power. Although
including a pairwise key establishment protocol [18, 28] with
Shamir’s secret-sharing scheme can protect the secret from
nonshareholders as well, most pairwise key establishment
protocols are computationally secure (not information the-
oretically secure) and the complexity of key establishment
protocol will have a quadratic relationship with the number
of shareholders participating in the secret reconstruction
phase.

5.3. Some Future Works. In the last three decades, many
fascinating works about secret-sharing have been proposed
in the literature, and different types of secret-sharing schemes
can provide different properties. For example, verifiable
secret-sharing (VSS) scheme [15–17] not only allows the
shareholders to verify the validity of their received shares
in the share generation and distribution phase but also
allows the verification of the revealed shares in the secret
reconstruction phase. In proactive secret-sharing schemes
[29–31], shareholders can refresh their shares periodically
without the dealer being involved, so that the shares obtained
by the adversaries will become obsolete after the shares
are updated. Moreover, the threshold can be dynamically
adjusted when some shareholders join in or leave. In multiple
secret-sharing schemes [32–34], each shareholder can use her
share to recover multiple secrets at different stages. In this
paper, we have not considered these additional properties,
and the existing secret-sharing schemes have not considered
the issue of protecting the secret(s) from nonshareholders.
Therefore, incorporating the ideas presented in this paper
with these different types of secret-sharing schemes will be
interesting, and we consider these further investigations as
our future works.

6. Conclusion

A new type of secret-sharing, called protected secret-sharing
(PSS), has been introduced in this paper. In a PSS scheme,
the shareholders’ shares not only can be used to recover
the secret but also can be used to protect the shares against
nonshareholders in the secret reconstruction phase. A (𝑡, 𝑛)
PSS scheme using a bivariate polynomial is proposed, and
we provide security and complexity analysis of the proposed
scheme. Some possible future works are also discussed in the

paper. Note that our method is generic enough to be directly
applied with threshold cryptosystems for the same purpose.
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