
© The Author 2009. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

doi:10.1093/comjnl/bxp044

Efficient On-line/Off-line Signature
Schemes Based on Multiple-Collision

Trapdoor Hash Families

Lein Harn
1
, Wen-Jung Hsin

2
and Changlu Lin

3,4,∗

1Department of Computer Science and Electrical Engineering, University of Missouri-Kansas City,
Kansas City MO 64110, USA

2Department of Information and Computer Science, Park University, Parkville, MO 64152, USA
3State Key Laboratory of Information Security, Graduate University of Chinese Academy of Sciences,

Beijing 10049, P.R. China
4Key Laboratory of Network Security and Cryptology, Fujian Normal University, Fujian, 35007, P.R. China

∗Corresponding author: lincl@is.ac.cn

The first on-line/off-line signature scheme introduced by Even et al. in 1990 has two problems: (a)
impractical signature length and (b) a one-time use of signature generated during the off-line phase.
In 2001, Shamir and Tauman significantly shortened the length of the signature by using trapdoor
hash families introduced by Krawczyk and Rabin in 2000. However, each trapdoor hash value and its
signature in the off-line phase of Shamir and Tauman’s signature scheme can be used for signing only
one message in the on-line phase. In this paper, we propose multiple-collision trapdoor hash families
based on discrete logarithm and factoring assumptions, and provide formal proofs of their security.
We also introduce an efficient on-line/off-line signature scheme based on our proposed trapdoor hash
families. Our on-line/off-line signature scheme can re-use a trapdoor hash value for signing multiple
messages. If a signer includes this trapdoor hash value in the public-key digital certificate, there is no
need to have any regular digital signature scheme to sign the trapdoor hash value in the off-line phase.
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1. INTRODUCTION

In 1990, Even et al. [1] introduced the first on-line/off-
line signature scheme in which the signing of a message is
accomplished in two phases, namely, off-line and on-line. In
their scheme, a signer performs moderate off-line computation
and performs fast on-line computation when a message is ready.
The on-line/off-line signature is very useful for applications
such as smart cards and mobile devices in which on-line
resources are limited. Nonetheless, there are a few drawbacks
in the scheme of Even et al. First, the length of the signature
in their scheme is not practical as it is increased by a quadratic
factor with the length of the message [1,2]. Second, a signature
generated in the off-line phase can be used for no more than one
message in the on-line phase (the so-called one-time signature

will be defined later in Section 4.2). In 2001, Shamir andTauman

[2] proposed an improved on-line/off-line signature scheme
based on (a) trapdoor hash families introduced by Krawczyk
and Rabin [3] and (b) a regular digital signature algorithm,
to significantly shorten the length of the signature. Krawczyk
and Rabin [3] used trapdoor hash families to construct a
chameleon signature, which is a signature verifiable only by
an intended party and not by any other party. However, the
trapdoor hash value and its signature in the off-line phase
in Shamir and Tauman’s signature scheme can only be used
for one message in the on-line phase, as multiple uses of the
same trapdoor hash value in different messages will lead to
the disclosure of the secret key. We call this type of trapdoor
hash families one-time collision trapdoor hash families. Chen
et al. [4,5] proposed a special double-trapdoor hash family to
overcome the above problem. Their scheme is based on the
elliptic curve for implementation. They have claimed that their
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scheme is optimal with regard to the length of the signature.
The use of elliptic curves in cryptography was suggested
independently by Koblitz [6] and Miller [7] in 1985. It was
commonly believed that a group with fewer elements can
be used to obtain the same level of security as RSA-based
systems. Based on this assumption, the key length of elliptic
curve-based cryptographic algorithms can be much smaller
than the key length of most RSA or discrete logarithm (DL)-
based cryptographic algorithms. However, no mathematical
proof of this assumption for elliptic curve-based cryptosystem
has been published so far. Catalano et al. [8] unified Even
et al.’s paradigm based on one-time signatures and Shamir–
Tauman paradigm based on trapdoor hash functions, in the sense
that they both use an ordinary signature scheme and a (weak)
one-time signature scheme as components. Recent works in
on-line/off-line signatures have been done in improving the
efficiency [9], eliminating the random oracle model [10],
constructing ID-based on-line/off-line signature schemes [11],
constructing on-line/off-line threshold signature schemes [12,
13], avoiding key exposure [4] and avoiding trapdoor hash
primitives [14].

In this paper, we propose multiple-collision trapdoor hash
families based on DL and factoring assumptions. In multiple-
collision trapdoor hash families, revealing multiple collisions
of the same hash value will not leak the secret key of trapdoor
functions. Our multiple-collision trapdoor hash families are
similar to the ElGamal signature scheme [15] in which a pair of
long-term and one-time private keys is used for generating an
ElGamal digital signature. Based on our proposed trapdoor hash
families, we introduce an efficient on-line/off-line signature
scheme which can significantly improve the efficiency of the
Shamir and Tauman’s on-line/off-line signature. Specifically,
in our signature scheme, a trapdoor hash value can be re-used
for signing multiple messages. If a signer includes this trapdoor
hash value in the public-key digital certificate, there is no need
to sign the hash value in the off-line phase.

This paper is organized as follows. Section 2 reviews the
trapdoor hash families. Section 3 describes our proposed
trapdoor hash families. Section 4 reviews Shamir and Tauman’s
on-line/off-line signature scheme. Section 5 describes our
on-line/off-line signature schemes. Section 6 provides a
conclusion.

2. REVIEW OF TRAPDOOR HASH FAMILIES

A trapdoor hash family was introduced in [3] and formally
defined in [2]. For reviewing purpose, we describe the definition
in the following. For a comprehensive study on trapdoor related
schemes, readers are referred to [16].

Definition 2.1 (trapdoor hash family [2]). A trapdoor
hash family consists of a pair (I, H), where I is a probabilistic
polynomial-time key generation algorithm and H is a family
of randomized hash functions. I generates a pair (HK, TK),

where HK is a hash key and TK is its associated trapdoor key.
A trapdoor hash function in H is a hash function with a trapdoor
secret. It is denoted as hHK(m, s), where HK is a public hash
key, TK is a private trapdoor key, m is a message and s is an
auxiliary random number.

A trapdoor hash family (I, H) satisfies the following three
properties:

(i) Efficiency: Given HK and any tuple (m, s), the hash
value hHK(m, s) can be computed efficiently (i.e. in
polynomial time).

(ii) Trapdoor Collision: Based on a trapdoor one-way
property, the entity with the knowledge of the trapdoor
secret can generate collisions in polynomial time.

(iii) Collision Resistance: This property is from the
perspective of an outsider (e.g. an entity without
the knowledge of the trapdoor key). Without knowing
the trapdoor secret, it is computationally infeasible for
an outsider to generate any two arbitrary points (m1, s1)

and (m2, s2) such that these two points collide, i.e.
hHK(m1, s1) = hHK(m2, s2) where m1 �= m2.

In the following subsections, we first review Krawczyk and
Rabin’s DL-based trapdoor hash family. We then review Shamir
and Tauman’s factoring-based trapdoor hash family.

2.1. Krawczyk and Rabin’s DL-based trapdoor hash
family

Krawczyk and Rabin [3] described the trapdoor hash function
in H based on DL assumption as follows. Randomly select a
large prime q. Randomly choose a safe prime p (i.e. a prime p

such that q = (p − 1)/2 is prime) and an element g of order
q. Choose a random element x and compute y = gx (mod p).
The public hash key is HK = (p, g, y) and the private trapdoor
key is TK = x. The trapdoor hash function hHK(m, s) is defined
as follows:

hHK(m, s)
def= gmys (mod p).

To show that the hHK(m, s) is a trapdoor hash function under
the DL assumption, one needs to show that it fulfills three main
properties of a trapdoor hash function, i.e. efficiency, trapdoor
collision and collision resistance. A lemma and its formal proof
asserting that hHK(m, s) is a DL-based trapdoor hash family can
be found in [2].

2.2. Shamir and Tauman’s factoring-based trapdoor
hash family

Shamir and Tauman [2] described the trapdoor hash function in
H based on factoring assumption as follows. Randomly choose
two safe primes p and q (i.e. primes such that p′ = (p − 1)/2
and q ′ = (q − 1)/2 are primes) and compute n = pq.
Randomly choose an element g of order λ(n), where λ(n) =
lcm(p−1, q −1) = 2p′q ′. The public hash key is HK = (n, g)
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and the private trapdoor key is TK = (p, q). The trapdoor hash
function hHK(m, s) is defined as follows:

hHK(m, s)
def= gm‖s (mod n),

where ‘‖’ denotes concatenation. A lemma and its formal proof
asserting that hHK(m, s) is a factoring-based trapdoor hash
family can be found in [2].

3. OUR MULTIPLE-COLLISION TRAPDOOR HASH
FAMILIES

In Krawczyk and Rabin’s DL-based trapdoor hash family,
reviewed in Section 2.1, there is only one secret element in TK,
i.e. x. Therefore, there is only one associated public value y in
HK. Shamir and Tauman [2] utilized this trapdoor hash family
to construct a one-time on-line/off-line signature scheme (see
Section 4.2 for the reason why their signature is one-time).

To efficiently use a trapdoor hash value for signing multiple
messages, we propose to include an additional one-time secret
in the trapdoor hash function. This is similar to ElGamal’s
signature scheme [15] in which a one-time secret key was
introduced for signing each message. That is, we introduce
a new parameter r for our proposed trapdoor hash function,
and denote hHK(m, r, s) as a trapdoor hash function in H. In
Section 5.1, we will use our modified trapdoor hash families in
an on-line/off-line signature scheme so that a signer can use the
same trapdoor hash value to sign multiple messages.

In the following subsections, we first introduce a new
trapdoor hash family based on the DL assumption, and then
introduce a new trapdoor hash family based on the Factoring
assumption. In both cases, we also present formal security
proofs of our proposed trapdoor hash families.

3.1. DL-based multiple-collision trapdoor hash family

The original ElGamal signature scheme [15] was proposed in
1985; but its security was never proved equivalent to the DL
problem. In 1996, Pointcheval and Stern [17] used the Forking
Lemma to prove the security of a slight variant of the original
ElGamal signature scheme, called modified ElGamal signature
scheme. Later in this section, we shall show that the modified
ElGamal signature scheme is a special function of our proposed
trapdoor hash function. In this section, we first review the
modified ElGamal signature scheme. We then introduce a new
trapdoor hash family based on the DL and present a formal
security proof of our proposed scheme.

Modified ElGamal signature scheme consists of three steps
as follows:

• Let p be a random large prime and g be a generator of Z∗
p;

then the public key is y = gx (mod p) and the secret key
is x.

• Picks k ∈ Zp−1 randomly and a cryptographic hash
function f , the signature of message m is (r, s), where

r = gk (mod p) and solves the linear equation f (m, r) =
xr + ks (mod p − 1).

• The verification of the signature checks the equation
gf (m,r) = yrrs (mod p).

The following paragraph describes the DL-based multiple-
collision trapdoor hash function. Choose at random a safe prime
p (i.e. a prime p such that q = (p − 1)/2 is prime) and an
element g of order q. Choose random elements x, k, s ∈ Zq , and
compute y = gx (mod p) and r = gk (mod p). The public
hash key is HK = (p, g, y) and the private trapdoor key is
TK = (x, k). The randomized hash function in H is defined as
follows:

hHK(m, r, s)
def= g−f (m,r)yrrs (mod p),

where f : {0, 1}∗ ×Zp → Zq is a cryptographic hash function.
The auxiliary parameter r does not depend on message m and
can be computed off-line. The computation and characteristics
of r are the same as those in all DL-based cryptographic
algorithms.

Remark 1. We recall that the verification equation of the
modified ElGamal signature scheme is gf = yrrs (mod p),
where r = gk and f = f (m, r). This equation can be modified
into a form as hHK(m, r, s) = 1 = g−f yrrs (mod p). Thus,
the modified ElGamal signature is just a special trapdoor hash
function in our proposed trapdoor hash family.

Remark 2. There are three reasons why we use function
f to hash message m and commitment r: (1) Efficiency—
for any message with an arbitrary length, the length of the
output of function f is fixed, (2) Security—similar to using
function f in any digital signature scheme to prevent existential
forgery, our proposed trapdoor hash function can easily and
effectively prevent collisions when using the hash function f ,
(3) Security proof—we assume that hash function f behaves
like a random oracle, and hence we follow the established
cryptographic techniques, i.e. the Oracle Replay Attack and
the Forking Lemma as proposed in [17], to prove the collision
resistance of our proposed trapdoor hash family.

Remark 3. Later in this paper we shall show that the
auxiliary number r must not be re-used in signing more than
one message. Since r = gk, where k is a random value from
Zq , it is probabilistically negligible to select the same k for
different messages.

Theorem 3.1. The pair (I, H) is a trapdoor hash family
under the DL assumption.

Proof. We show that the new trapdoor hash family based on the
DL satisfies the three properties: efficiency, trapdoor collision
and collision resistance.

Efficiency: Given any (m, r, s) and the public hash key HK =
(p, g, y), the function hHK(m, r, s) = g−f (m,r)yrrs (mod p)

is computable in polynomial time.
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Trapdoor Collision: The following shows that calculating the
trapdoor collision by the user with the knowledge of the trapdoor
secret can be done in polynomial time. Given (m, r, s) and
additional m′ and r ′, where r ′ = gk′

(mod p), the user wants
to find s ′ such that

g−f yrrs = g−f ′
yr ′

r ′s′
(mod p).

Since the user knows the trapdoor secret (x, k) and can also
compute r ′ = gk′

( mod p), where k′ is randomly selected from
Zq , the value of s ′ can be calculated in polynomial time as
follows:

s ′ = (k′)−1((f ′ − f ) + x(r − r ′) + ks) (mod q).

Collision Resistance: For a formal security proof, the hash
function f = f (m, r) in our proposed trapdoor hash function
will be treated as a random oracle. Assume to the contrary that
without knowing the trapdoor secret (x, k), given input HK =
(p, g, y), the adversary can generate a collision (m1, f1, r1, s1)

such that H = g−f1yr1r
s1
1 (mod p), where f1 = f (m1, r1), by

making some oracle queries in probabilistic polynomial time.
Then, based on the well-known cryptographic techniques, the
Oracle Replay Attack and the Forking Lemma as proposed in
[17], the adversary uses the oracle replay attack by a polynomial
replay of the attack with the same random tape and a different
oracle. Readers can refer to the original works in [17] for the
detailed description. The adversary obtains two collisions of
a special form as (m1, f1, r1, s1) and (m2, f2, r2, s2), where
(m2, r2) = (m1, r1) and f1 �= f2, s1 �= s2.

Since (f1, r1, s1) and (f2, r1, s2) are two pairs of collisions
for H where f1 �= f2, we obtain the following two equations:

H = g−f1yr1r
s1
1 (mod p),

H = g−f2yr1r
s2
1 (mod p).

Thus, we have r
s2−s1
1 = gf2−f1 (mod p). Since s2 − s1 �= 0, it

is easy to compute the DL of r1 as

k1 = (f2 − f1)(s2 − s1)
−1 (mod q).

Repeating the same procedure from the beginning, the
adversary can generate a second collision (m2, f2, r2, s2) such
that H = g−f2yr2r

s2
2 (mod p), where m1 �= m2 and r1 �= r2.

The adversary can also compute the DL of r2.We assume that the
DL of r1 and r2 are k1 and k2, respectively. Then, the adversary
can establish the following equation as

−f1 + xr1 + k1s1 = −f2 + xr2 + k2s2 (mod q).

The adversary can solve the DL of y as

x = (r1 − r2)
−1((f1 − f2) + (k2s2 − k1s1)) (mod q).

This result contradicts the DL assumption.

3.2. Factoring-based multiple-collision trapdoor hash
family

This section describes another new trapdoor hash function in
H based on factoring assumption. Choose at random two safe
primes p and q (i.e. primes such that p′ = (p − 1)/2 and
q ′ = (q − 1)/2 are primes) and compute n = pq. Choose at
random an element g of order λ(n), where λ(n) = lcm(p −
1, q − 1) = 2p′q ′. Choose a random element k and compute
r = gk (mod n). The public hash key HK = (n, g) and the
private trapdoor key TK = (p, q, k). The randomized hash
function in H is defined as follows:

hHK(m, r, s)
def= rgf (m,r)s (mod n),

where f : {0, 1}∗ → Zλ(n) is a cryptographic hash function.

Theorem 3.2. The pair (I, H) is a trapdoor hash family
under the factoring assumption.

Proof. We show that the proposed trapdoor hash family based
on factoring assumption satisfies the three properties: efficiency,
trapdoor collision and collision resistance.

Efficiency: Given any tuple (m, r, s) and the public hash key
(n, g), the hash value hHK(m, r, s) = rgf (m,r)s (mod n) can be
computed in polynomial time.

Trapdoor Collision: The following shows that calculating the
trapdoor collision (m′, r ′, s ′) by the user with the knowledge
of trapdoor secret TK = (p, q, k) can be done in polynomial
time. Given (m, r, s) and additional m′ and r ′, where r ′ =
gk′

(mod n), the user wants to find s ′ such that

rgf s = r ′gf ′s′
(mod n).

Since the user knows the trapdoor secret (p, q, k) and can
compute r ′ = gk′

(mod n), where k′ is randomly selected, the
value of s ′ can be calculated in polynomial time as follows:

s ′ = (f ′)−1(f s + (k − k′)) (mod λ(n)).

Collision Resistance: For a formal security proof, the hash
function f = f (m, r) in our proposed trapdoor hash function
will be treated as a random oracle. Assume to the contrary
that without knowing the trapdoor secret (p, q, k), given
input HK = (n, g), the adversary can generate a collision
(m1, f1, r1, s1) such that H = r1g

f1s1 (mod n) where f1 =
f (m1, r1), by making some oracle queries in probabilistic
polynomial time. Then, based on the well-known cryptographic
techniques, the Oracle Replay Attack and the Forking Lemma
as proposed in [17], the adversary uses the oracle replay attack
by a polynomial replay of the attack with the same random
tape and a different oracle. The adversary obtains two collisions
of a special form as (m1, f1, r1, s1) and (m2, f2, r2, s2), where
(m1, r1) = (m2, r2), f1 �= f2 and s1 �= s2.
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Since (f1, r1, s1) and (f2, r1, s2) are collisions for H , we get
the following two equations:

H = r1g
f1s1 (mod n),

H = r1g
f2s2 (mod n).

Thus, we have gk1+f1s1 = gk1+f2s2 (mod n) and set x = f1s1 −
f2s2. Since f1 �= f2 and s1 �= s2, the probability that x = 0 is
negligible. Therefore, λ(n) divides x. Thus, φ(n) divides 2x. In
essence, there exists a probabilistic polynomial time algorithm
such that given input HK, it outputs a multiple of φ(n). In [18],
Miller shows that the factorization of n can be computed from
any multiple of φ(n). Therefore, this contradicts the factoring
assumption.

4. REVIEW OF SHAMIR AND TAUMAN’S SCHEME

In [2], Shamir and Tauman introduced a Hash–Sign–Switch
paradigm in which any regular digital signature scheme (such as
DSA [19] or RSA [20]) combined with a trapdoor hash family in
(I, H) can be converted into a on-line/off-line signature scheme.
Basically, in the off-line phase, a signer generates a hash value to
commit to an arbitrarily selected message. In the on-line phase,
given a message, the signer finds a collision of the trapdoor hash
to the previously calculated hash value. The collision point and
the signature generated in the off-line phase can be used as the
signature for message generated in the on-line phase. In Shamir
and Tauman’s efficiency analysis [2], they showed that their
scheme is efficient in that the computational load in the on-line
phase is about 0.1 modular multiplication, and the signature size
increases only by a factor of two, instead of a quadratic factor
as in the approach of Even et al. [1].

In Section 4.1, we describe Shamir and Tauman’s on-line/off-
line signature scheme in details. Section 4.2 describes an issue
associated with their approach.

4.1. Approach

Shamir and Tauman’s approach can combine any trapdoor hash
family (I, H) and any regular digital signature scheme (GEN,
SIGN, VERF) to generate an on-line/off-line signature scheme
(GEN′, SIGN′,VERF′). The following gives an example of a
signature scheme where the trapdoor hash family is based on
the DL assumption.

Let hHK(m, s) = gmys (mod p), where HK = (y, g, p),
TK = x, y = gx (mod p), p is a safe prime, g is a generator
of order q and q is a factor of p − 1. Denote a verification key
by VK and a signing key by SK for any regular digital signature
scheme.

• The Key Generation Algorithm GEN′: Generate (SK,
VK) using a key generation algorithm GEN and a pair
(TK, HK) using algorithm I. The signing key is (SK, TK,
HK) and the verification key is (VK, HK).

• The Signing Algorithm SIGN′: Given a signing key (SK,
TK, HK), the signing algorithm operates as follows.

◦ Off-line phase:The signer randomly picks a pair (m, s),
computes hash value hHK(m, s) = gmys (mod p)

and uses the private key SK to sign hHK(m, s) to
obtain SIGNSK(hHK(m, s)). The signer stores m, s, and
SIGNSK(hHK(m, s)).

◦ On-line phase: Given a message m′, the signer finds a
collision of the trapdoor hash such that hHK(m′, s ′) =
hHK(m, s) by solving s ′ such that it satisfies m + xs =
m′ + xs ′ (mod q). The signature of message m′ is
〈SIGNSK(hHK(m, s)), s ′〉.

• The Verification Algorithm VERF′: First compute
hHK(m′, s ′), and then verify SIGNSK(hHK(m, s))usingVK
and hHK(m′, s ′).

4.2. Issue associated with Shamir and Tauman’s Scheme

Although the Shamir and Tauman’s Hash-Sign-Switch signature
scheme is secure, the main issue associated with the scheme
resides in the inefficient use of hHK(m, s) and the signature
of hHK(m, s). To clearly explain this issue, we first define the
term one-time signature scheme and then show that Shamir
and Tauman’s on-line/off-line signature scheme is a one-time
signature scheme.

Definition 4.1 (one-time signature scheme). One-time
signature scheme is an on-line/off-line signature scheme in
which a signature generated off-line can be presented for
no more than one message in the on-line phase. The use of
the same signature for multiple messages leads to signature
forgery.

The following shows that Shamir and Tauman’s on-line/off-
line signature scheme is a one-time signature scheme. During
the off-line phase, since the signer is required to commit to the
trapdoor hash valuehHK(m, s), he needs to signhHK(m, s)using
any regular digital signature scheme. For ease of reference,
denote the signature of hHK(m, s) as SIGNSK(hHK(m, s)).
Each signature SIGNSK(hHK(m, s)) can be used for exactly
one message as multiple uses of the same signature for
different messages will lead to the disclosure of the trapdoor
key TK. Specifically, suppose that SIGNSK(hHK(m, s)) is
used for two different messages m1 with corresponding
s1 and m2 with corresponding s2. That is, hHK(m, s) =
hHK(m1, s1), and hHK(m, s) = hHK(m2, s2), which lead to
hHK(m1, s1) = hHK(m2, s2). Therefore, gm1+xs1 (mod p) =
gm2+xs2 (mod p). As m1 + xs1 = m2 + xs2 (mod q), one
can solve x as x = (m1 − m2)(s2 − s1)

−1 (mod q). Thus,
each hash value hHK(m, s) and the corresponding signature
SIGNSK(hHK(m, s)) can be used only once. Hence Shamir and
Tauman’s on-line/off-line signature is a one-time signature.
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One-time signatures are not efficient in terms of the cost
incurred for generating the hash value and the signature of the
hash value.

5. ON-LINE/OFF-LINE SIGNATURE SCHEMES

5.1. On-line/off-line signature scheme based on Shamir
and Tauman’s scheme

To efficiently use a trapdoor hash value, we propose an efficient
on-line/off-line signature scheme (GEN′, SIGN′,VERF′) based
on the modified trapdoor hash families (I, H) proposed in
Section 3 and any regular signature scheme (GEN, SIGN,
VERF).

• The Key Generation Algorithm GEN′: Generate a pair
(SK, VK) using a key generation algorithm GEN and a pair
(TK, HK) using algorithm I. The signing key is (SK, TK,
HK) and the verification key is (VK, HK).

• The Signing Algorithm SIGN′:

◦ Off-line phase: A signer randomly selects a mes-
sage m and values r and s. He then computes
hHK(m, r, s) and uses SK to sign hHK(m, r, s) to obtain
SIGNSK(hHK(m, r, s)). The signer stores (m, r, s) and
SIGNSK(hHK(m, r, s)). In addition, the signer generates
and stores (ki, ri) by randomly selecting ki and calculat-
ing ri according to the selected H. We should point out
that each pair (ki, ri) can only be used for signing one
message. This requirement is the same as in a modified
ElGamal signature.

◦ On-line phase: Given a message mi , the signer uses
(ki, ri) pre-computed in the off-line phase, and solves si

such that hHK(m, r, s) = hHK(mi, ri, si). The signature
of message mi is 〈SIGNSK(hHK(m, r, s)), ri, si〉.

• The Verification Algorithm VERF′: First compute
hHK(mi, ri, si), and then verify SIGNSK(hHK(m, r, s))

using VK and hHK(mi, ri, si).

We now analyze the security of the proposed on-line/off-line
signature scheme. Our scheme is obtained using the general
conversion technique as Shamir and Tauman’s scheme [2].
Thus, we can easily get the following result (Theorem 5.1) for
our scheme. Since the proof of this theorem is similar to the
Shamir and Tanman’s scheme, we omit the detailed description
of the proof.

Theorem 5.1. Let (I, H) be a multiple-collision trapdoor
hash family. Our proposed on-line/off-line signature scheme
(GEN′, SIGN′, VERF′) based on (I, H) is secure against
adaptive chosen message attacks if the regular digital signature
scheme (GEN, SIGN, VERF) is secure against generic chosen
message attacks.

5.2. Modified on-line/off-line signature scheme

Our trapdoor hash value can be used for signing multiple
messages. Thus, it can be included in a regular digital certificate
to provide its authenticity. In essence, our proposed on-line/off-
line signature scheme does not need any regular digital signature
scheme to sign a hash value in the off-line phase. As we have
pointed out in remark 1 that the modified ElGamal signature
is a special function of our proposed trapdoor hash family, the
modified ElGamal signature does not need any regular digital
signature scheme to sign its hash value in the off-line phase.
Based on this observation, we give a modified version for our
scheme.

We now present the modified on-line/off-line signature
scheme (GEN, SIGN, VERF) based on the multiple-collision
trapdoor hash families (I, H) described in Section 3 as follows.

• The Key Generation Algorithm GEN: Generate a pair
of HK and TK by applying I. A signer randomly selects a
message m and values r and s, and computes hHK(m, r, s).
As both HK and hHK(m, r, s) need to be authenticated for
verifying different signatures, these values can be included
in the signer’s regular public-key digital certificate for
long-term use. In contrast with Shamir and Tauman’s
signature scheme, our hHK(m, r, s) is computed only one
time.

• The Signing Algorithm SIGN:

◦ Off-line phase: The signer generates and stores (ki, ri)

by randomly selecting ki and calculating ri according to
the selected H. Each pair (ki, ri) can only be used for
signing one message. This requirement is the same as in
the modified ElGamal signature.

◦ On-line phase: Given a message mi , the signer uses
(ki, ri) pre-computed in the off-line phase, and solves si

such that hHK(m, r, s) = hHK(mi, ri, si). The signature
of message mi is (ri, si). Note that HK and hHK(m, r, s)

are included in the signer’s regular public-key digital
certificate.

• The Verification Algorithm VERF: From the signer’s
public-key digital certificate, the verifier can obtain HK
and hHK(m, r, s). The verifier computes hHK(mi, ri, si),

and checks if hHK(mi, ri, si)
?= hHK(m, r, s).

6. CONCLUSION

In this paper, multiple-collision trapdoor hash families under
both DL and factoring assumptions are introduced and are
secure under the random oracle model. We propose an efficient
on-line/off-line signature scheme based on these multiple-
collision trapdoor hash families. In our proposed scheme, as a
trapdoor hash value can be used for signing multiple messages,
the hash value can be included in the signer’s public-key digital
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certificate for long-term use, thereby eliminating the need for
a regular digital signature for each message, signing in the off-
line phase of Shamir and Tauman’s on-line/off-line signature
scheme.
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