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ABSTRACT

In 1992, a non-interactive k-secure m-conference protocol based on an m-variate polynomial has been proposed. Each
user needs to store a (m� 1)-polynomial having degree k as a private share. A secret conference key involving m users
can be computed by each conference member non-interactively using each private share. There is no overhead to exchange
information in order to establish a conference key. However, the storage space of each user is exponentially proportional to
the group size of the conference. In this paper, we propose a key establishment protocol using a multivariate polynomial in
ZN, where N is a RSA modulus. One unique feature of using this special type of polynomials for conference key protocol is
that the storage space of each user is fixed and is independent to the group size of the conference. User can use their shares
obtained from a key generation center initially to establish conference keys consisting of different users. Furthermore, we
propose two applications to demonstrate the importance of using this special type of polynomials to design solutions.
One is the private reconstruction of secret in a secret sharing scheme over network, and the other is the secure group
communication. Copyright © 2014 John Wiley & Sons, Ltd.

KEYWORDS

conference key; multivariate polynomial; secret sharing; RSA assumption; group communication

*Correspondence

Lein Harn, Department of Computer Science Electrical Engineering, University of Missouri at Kansas City, Kansas City, Missouri, U.S.A.
E-mail: lharn@umkc.edu
1. INTRODUCTION

In a secure communication involving n members (n ≥ 2), a
group key is needed to be shared among group users and
uses it to encrypt and authenticate messages. A group
key establishment protocol is a method to enable multiple
users to share a secret group key.

The class of centralized group key management proto-
cols is the most widely used protocols because of its effi-
ciency in implementation. For example, the Institute of
Electrical and Electronics Engineers (IEEE) 802.11i stan-
dard [1] employs an online server to select a group key
and transport it to each group member. The server in the
IEEE 802.11i encrypts the group temporal key using the
key encryption key obtained from the authentication
server, and the server transmits the encrypted message to
each mobile client (group member) separately. In IEEE
802.11i, the confidentiality of group key is protected by
conventional encryption algorithm, which is conditionally
secure. Recently, Harn and Lin [2] have proposed an au-
thenticated group key transfer protocol based on secret
sharing. Their protocol uses a RSA modulus to resist the
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insider attack. One major requirement of the centralized
group key management protocols is that a pre-shared key
is needed between each group member and the key gener-
ation center.

The most commonly used key agreement protocol is the
Diffie–Hellman (DH) key agreement protocol [3]. In DH
protocol, the session key is determined by exchanging
DH public keys of two communication entities. Because
the public key itself does not provide any authentication,
a digital signature of the public key can be used to provide
authentication. However, DH protocol can provide session
key only for two entities, not for a group more than two
members. Computing a group DH key among a set of n
group members is a special case of secure multiparty com-
putation in which a group of n members each possesses a
private input ki and computes a function f(k1, k2,…, kn) se-
curely [4]. In 2007, Katz et al. [5] proposed the first con-
stant round and fully scalable GDH protocol, which is
provably secure in the standard model (i.e.,without assum-
ing the existence of “random oracles”). In 2009, Brecher
et al. [6] extended the tree-DH technique of GDH protocol
with robustness, that is,with resistance to faults resulting
Copyright © 2014 John Wiley & Sons, Ltd.
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from possible system crashes, network failures, and misbe-
havior of the members. In 2011, Jarecki et al. [7] proposed
a robust group key agreement protocol, which can tolerate
up to t failed nodes. One common feature in these proto-
cols is that secure digital signatures are generated to
provide authentication of DH public keys. Because gener-
ation and verification of digital signatures take times, the
computational cost of each group member is the main con-
cern in implementing these protocols especially when there
are a large number of group members. Recently, Harn et al.
[8] proposed a group key agreement protocol, which used a
one-way key confirmation and digital certificates of DH
public keys to provide authentication of group keys.

In 1992, Blundo et al. [9] have proposed a non-
interactive k-secure m-conference protocol based on a
multivariate polynomial. Their protocol can establish a
conference key of m participants. A system is said to be
k-secure if any k users, pooling together their shares, have
no information on keys they should not know. The key dis-
tribution center (KDC) is responsible to pick a symmetric
m-variate polynomial having k degree, F x1; x2…; xmð Þ ¼

∑
0≤ j1 ;…jm ≤ k

aj1 ;…jm x1ð Þ j1 x2ð Þ j2… xmð Þ jm . and generates shares,

f i x2…; xmð Þ¼F i; x2;…; xmð Þ¼ ∑
0≤ j2 ;…jm ≤ k

bj2 ;…jm x2ð Þ j2… xmð Þ jm ;
for i = 1, 2, …, l, for users. Then, later, each user can use
his share to establish a conference involving m members.
In [9], it has shown that the k-secure 2-conference protocol
is a special case of Blom’s scheme [10]. Because each
share is a polynomial involving m� 1 variables and hav-
ing degree k, each user needs to store (k + 1)m � 1 coeffi-
cients from GF(p). The storage space of each user is
exponentially proportional to the size of conference. This
makes their protocol impractical. However, the k-secure
2-conference protocol is a special case of Blundo et al. ap-
proach, and this protocol is based on a symmetric bivariate
polynomial. The storage space of each user is only to store
k + 1 coefficients from GF(p). This special case can signif-
icantly reduce the size of stored information for each user.
Since then, key distribution using symmetric bivariate
polynomial has been widely adopted in communication
applications, such as in the sensor network [11–16]. The
general design approach of these schemes is that a server
picks a symmetric bivariate polynomial and generates
shares for users. Each share is sent to user secretly. Be-
cause of the property of symmetry of a bivariate polyno-
mial, secret communication keys can be derived from
these shares when secure peer-to-peer communication is
needed. There are some key establishment schemes that
use polynomials other than a bivariate polynomial. For ex-
ample, the key establishment scheme proposed by Zhou
et al. [17] is based on a trivariate polynomial, and the
scheme proposed by Fanian et al. [18] is based on an
m-variate polynomial. However, both schemes can only
establish a secret key for two users.

In this paper, we propose a conference key establish-
ment protocol using a multivariate polynomial in ZN,
where N is a RSA modulus. The advantage of using this
Security Comm. Networks 2015; 8:1794–1800 © 2014 John Wiley & Sons, Ltd
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type of multivariate polynomials in the design of any
non-interactive k-secure m-conference protocol can limit
the storage space of each user to be the coefficients of a
univariate polynomial. In addition, we show that shares
generated for a k-secure m-conference protocol can support
any conference with size r, where r ≤m. We propose two
applications to demonstrate the importance of using this
special type of polynomials to provide solutions. We list
the contributions of this paper as follows.

• A non-interactive k-secure m-members n users confer-
ence key establishment protocol using a univariate
polynomial in ZN, where N is a RSA modulus, is
proposed.

• The memory space of each user is limited to be (k+ 1)
log2N bits, where N is the RSA modulus.

• Shares of users can be used to establish conference
keys involving r users, where r ≤m.

• We prove that the security of the proposed protocol is
based on the RSA assumption.

• We show that using our proposed polynomial in two
applications, a (t,n) sharing scheme (SS) and a secure
group communication, significant improvement of
efficiency can be achieved.

The rest of this paper is organized as follows. In
Section 2, we first give the definition and describe the
model of our proposed key establishment protocol, and
then we propose our protocol. In Section 3, we include
the performance and security analysis of our protocol. In
Section 4, we introduce our design in a (t,n) SS and, in
Section 5, we introduce our design in a secure group com-
munication. We conclude in Section 6.
2. CONFERENCE KEY
ESTABLISHMENT PROTOCOLS

In this section, we propose a special type of symmetric
m-variate polynomial to design the k-secure m-conference
protocol. The storage space of each user is the coefficients
of a univariate polynomial.
2.1. Definition

In this section, we introduce a k-secure m-members n users
conference key establishment protocol that each user can
use his share to establish a conference involving at most
m users. The following definition defines the properties
of the protocol.

Definition 1. k-secure m-members n users conference key
establishment protocol ((k,m, n) CKEP). Let k, m, n be
positive integers with k,m ≤ n. For a group consisting of
n users, a k-secure m-members n users conference key es-
tablishment protocol has the following properties: (1) the
protocol can resist up to k colluded users, and (2) the
1795.
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protocol can establish a secure conference key for any
conference having r (i.e.,r ≤m) members.

In our proposed (k,m,n) CKEP, the KDC is responsible
to register n users, {P1,P2,…,Pn}, and issue a secret share,
si, to each user, Pi, initially. In the event that any r users, for
example Pi1 ;Pi2 ;…;Pirf g , want to hold a secure confer-
ence, each user, Pij , can user his or her secret share, sij , to
compute a secret conference key non-interactively as

F sij
� � ¼ K; if Pij∈ Pi1 ;Pi2…;Pirf g;
F sij
� �

≠K; if Pij∉ Pi1 ;Pi2…;Pirf g;

(

where F is a public function.
2.2. Protocol

In this section, we propose a (k, m, n) CKEP involving
m users, Pi1 ;Pi2 ;…;Pimf g, where m is an even integer.
The KDC picks a RSA modulus N, where N is the
product of two large safe primes, p and q, that is,
p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are also
primes. The Euler totient function is ϕ(N) = (p� 1)
(q� 1) = 4p ’ q ’. Thus, we have GCD(m� 1,ϕ(N)) = 1.
p and q are KDC’s secrets; N is made publicly known.
The RSA assumption assumes that it is computa-
tionally infeasible to factor the product of two large
primes.

For any m users want to establish, a secret conference
key among them can follow Scheme 1.
Scheme 1. (k,m, n) CKEP involving m users (m is even and
4 ≤m).

Share generation
Step 1. The KDC selects a random polynomial having degree

k as f(x) = akx
k +… + a1x + a0 mod N, where ai ∈ (0, N).

The m-variate polynomial is F x1; x2;…; xmð Þ ¼
∏m

i¼1f xið ÞmodN.
Step 2. The KDC computes share, si xð Þ ¼ f ið Þ 1

m�1f xð Þ mod N , for
each user Pi , where i is a public information associated
with the user, Pi, and sends each share, to user Pi

secretly, for i=1,2,…,n.
Conference key establishment
We assume that m users, Pi1 ;Pi2 ;…;Pimf g, want to establish a
secret conference key among them. Each user, Pij , uses his/her
share, sij xð Þ ¼ f ij

� � 1
m�1f xð Þ , to compute K ¼ ∏m

l¼1;l≠jsij ilð Þ ¼ ∏m
l¼1

f ilð ÞmodN.

Note that f ið Þ 1
m�1modN exists becausem is an even integer

andGCD(m� 1, 4p′q′) = 1. Each user needs to store a share,
which is a univariate polynomial having degree k. The
storage space is fixed and is independent with the number
of users. To compute the conference key using his or her
share, each user takes m� 1 polynomial evaluations.
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Remark 1. To establish a conference key involving r
users, where r ≤m, each user can use his or her share to
compute the conference key following Scheme 2.

Scheme 2. (k,m, n) CKEP involving r users (m is even,
r ≤m, and 4≤m).

Weassume that r users, Pi1 ;Pi2 ;…;Pirf g,want to establish a secret
conference key among them. Each user, Pij ,uses his/her share
sij xð Þ to compute the conference key as K ¼ ∏r

l¼1;l≠jsij ilð Þ�
sm�r
ij

0ð Þmod N.
3. PERFORMANCE AND SECURITY
ANALYSIS

3.1. Performance

Each user needs to store the coefficients of a polyno-
mial having degree k. There is no communication
overhead to exchange information in order to establish
a conference key. Note that each user, Pi, has his or

her secret share, si xð Þ ¼ f ið Þ 1
m�1f xð Þ mod N , where f(x)

is a polynomial having degree k and each coefficient,
ai ∈ ZN. Thus, the memory cost of each user is to store
(k + 1)log2N bits.

Horner’s rule [19] can be used to evaluate polynomials.
In the following discussion, we show the cost for comput-
ing a conference key involving r users (r ≤m). From
Horner’s rule, evaluating a polynomial of degree k needs
k multiplications and k+ 1 additions. The computational
cost to establish a conference key with size r consists of
the cost of evaluating r� 1 polynomials and evaluating
an integer with power m� r (i.e., needs log2(m� r) multi-
plications). Overall, the computational cost, to establish a
conference key involving r users, each user needs to
evaluate (r� 1)k+ log2(m� r) + r multiplications and (r� 1)
(k+1) additions. This computation is much simpler than
the RSA public-key operation, which requires approximately
1.5 log2N multiplications.

If new users join the application, KDC can just
issue new shares to new users without affecting
shares of existing users. On the other hand, if there
are departing users from the application, all existing
shares do not need to be updated. However, if we
assume that any departing user may compromise his
or her share, the secrecy of shares of remaining share-
holders is protected if the number of compromising
shares is less than k+ 1.

3.2. Analysis

In this section, we provide analysis of our proposed proto-
col. From Definition 1, the (k, m, n) CKEP protocol has the
following properties: (a) the protocol can resist up to k col-
luded users and (b) the protocol can establish a secure
ity Comm. Networks 2015; 8:1794–1800 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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conference key for any conference having r (i.e., r ≤m)
members. We first prove the correctness of the proposed
protocol. Then, we prove the security of the protocol is
based on the RSA assumption. Our security analysis
addresses two types of attacks, the known shares attack
and the known conference keys attack. First, we prove that
the protocol is secure under the RSA assumption against
attack of knowing a single share. Then, we prove that the
protocol is secure against attacks of knowing fewer than
k+ 1 shares and k+ 1 conference keys.

3.2.1. Correctness of the protocol
The following theorem proves the correctness of our

proposed protocol.

Theorem 1. The protocol can establish a secure confer-
ence key for any conference having r (i.e., r≤m) members.

Proof. In Scheme 2, the conference key for the set of
users, Pi1 ;Pi2 ;…;Pirf g, is

K ¼ ∏r
l¼1;l≠jsij ilð Þ

� �
�sm�r

ij
0ð Þmod N

¼ ∏r
l¼1; l≠j f ij

� � 1
m�1f ilð Þ

� �
�f ij
� �m�r

m�1f m�r 0ð Þ
¼ ∏r

l¼1 f ilð Þ �f m�r 0ð Þ:

This conference key can only be computed by users in
the set, Pi1 ;Pi2 ;…;Pirf g, who know one of the share in
the set of shares, si1 ; si2 ;…; sirf g. ■
Remark 2. In our proposed protocol, the conference
key is limited to conference members. Any user who has
registered and received a share from KDC but not a confer-
ence member cannot obtain the conference key.
3.2.2. Known shares attack

(a) Known a single share

Definition 1. (RSA Assumption) It is computationally
infeasible to compute M given only the ciphertext C ¼
Memod N and RSA public key (N, e).

Lemma 1. The proposed scheme is secure under the
RSA assumption to resist the attack by a single user to
solve the secret polynomial, f(x), used to generate shares.

Proof. We use the technique of proof by contradiction
to prove this Lemma. Suppose to the contrary that without
knowing the factoring of the RSA modulus N, given the

share, si(x), which is a univariate polynomial, g xð Þ ¼
f ið Þ 1

m�1f xð Þ, having degree k, there exists an algorithm, Al-
gorithm A, which can factor the polynomial, g(x), to obtain
the secret polynomial, f(x), of the KDC. In the following
discussion, we want to show that the adversary can use
Security Comm. Networks 2015; 8:1794–1800 © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/sec
Algorithm A to decrypt the RSA ciphertext, C=MemodN,
knowing only RSA public key, (N,e). Given any cipher-
text, C=MemodN, where C= (ck, ck� 1,…, c0)10 ∈ZN,
the ciphertext can be represented as a polynomial, g(x)
= ckx

k + ck� 1x
k� 1 +⋯+ c0modN, such that C= g(10).

The adversary can model the RSA encryption in terms of
polynomials as g(x) = f(i)e� 1f(x)modN, such that if
x= i = 10, we have g(10) = f(10)emodN⇒C=MemodN.
This implies that M= f (10)modN. Thus, Algorithm A can
be used to factor g(x) to obtain the polynomial, f (x). The
plaintext is computed as f (10) =MmodN. This result con-
tradicts the RSA assumption. We conclude that Algorithm
A does not exist. ■

Lemma 2. Knowing a single share cannot solve the
secret polynomial, F x1; x2;…; xmð Þ ¼ ∏m

i¼1 f xið Þ mod N ,
used to generate conference key.

Proof. Our proof is based on the well-known Lagrange
interpolation formula. Because the polynomial,
F x1; x2;…; xmð Þ ¼ ∏m

i¼1 f xið Þ mod N , is constructed by a
univariate polynomial, f (x), having degree k, according to
the Lagrange interpolation formula, it needs at least k+ 1
or more than k+ 1 points, (i, f (i)m), i = 1, 2,…, k+ 1, to

solve the polynomial by computing ∑
kþ1

i¼1
f ið Þm∏

m

l¼1
∏
kþ1

j¼1; j≠i
xl�jð Þ
i�jð Þ mod N ¼ ∏m

i¼1 f xið Þ mod N: The user, Ui, knowing

only one point, (i, f (i)m), cannot solve the polynomial,
∏m

i¼1 f xið Þ mod N. ■

Theorem 2. The proposed scheme can resist the attacks
by a single user knowing only one share under the RSA
assumption.

Proof. From Lemmas 1 and 2, we can conclude that a
single user cannot use his share to solve both the secret
polynomial, f(x), used to generate shares, and the secret
polynomial, F(x1, x2,…, xm), used to generate conference
keys under the RSA assumption. Hence, our proposed
scheme is secure against attacks by a single user. ■

(a) Known multiple shares

Corollary 1. Knowing fewer than k+ 1 shares cannot
solve the secret polynomial, ∏m

i¼1 f xið Þ mod N , used to
generate conference keys.

Proof. From Lemma 2, we know that according to
the Lagrange interpolation formula, it needs at least
k + 1 or more than k + 1 points, (i, f (i)m), i = 1, 2,…,
k + 1, to solve the polynomial used to generate confer-
ence keys. Because each share can only generate one
point on the polynomial, knowing fewer than k + 1
shares cannot solve the polynomial used to generate
all conference keys. ■
1797.
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3.2.3. Known conference keys attack
Theorem 3. Knowing fewer than k+ 1 conference keys
cannot solve other conference keys.
Proof. Knowing k+ 1 or more than k+ 1 conference
keys, for example knowing k+1 keys in the set, { f (1) f (2)
…, f (m� 1) f (m), f (1) f (2)…, f (m� 1) f (m+1),…, f (1) f (2)
…, f (m� 1) f(m+ k)}, according to the Lagrange interpola-
tion formula, can compute the interpolation polynomial,

∑
k

i¼m
f 1ð Þ f 2ð Þ; f m� 1ð Þf ið Þ ∏

k

j¼m; j≠i

x� jð Þ
i� jð Þ modN ¼ f 1ð Þ�f 2ð Þ

�…�f m� 1ð Þ f xð Þ . Knowing this polynomial can obtain
other conference keys. For example, the conference key, f
(1) f (2)… f (m� 1) f (m+2k), can be computed from this
polynomial. On the other hand, knowing fewer than k + 1
conference keys cannot obtain the interpolation polyno-
mial and hence cannot obtain other conference keys. Thus,
the proposed scheme is secure against attack of knowing
fewer than k + 1 conference keys. ■
4. APPLICATION TO SECRET
SHARING ON NETWORKS

The secret SSs were first introduced by both Blakley [20]
and Shamir [21] independently in 1979 as a solution for
safeguarding cryptographic keys and have been studied
extensively in the literature. SS has become one of the
most basic tools in cryptographic research. In Shamir’s c
SS, a secret s is divided into n shares by a dealer and shares
are sent to shareholders secretly. The secret s is shared
among n shareholders in such a way that (a) the secret
can be reconstructed with t or more than t shares, and (b)
the secret cannot be obtained with fewer than t shares.
Shamir’s (t, n) SS is based on the linear polynomial and
is unconditionally secure. There are other types of SS.
For example, Blakely’s scheme [20] is based on the geom-
etry, and Mignotte’s scheme [22] and Asmuth-Bloom’s
scheme [23] are based on the Chinese Remainder
Theorem.

When the secret reconstruction process is per-
formed over a network, if the exchanged shares
among shareholders are unprotected, the reconstructed
secret can also be available to attackers. In order to
protect the secrecy of the secret, encryption is used
to protect the revealed shares among shareholders.
Therefore, a conference key is also needed in the
secret reconstruction.

In Scheme 3, we show that if our proposed multivariate
polynomial is used in a (k+ 1, n) SS to generate shares for
shareholders, then in the secret reconstruction process, the
shares can not only be used to establish a conference key to
protect shares but also can be used to recover the secret.
Therefore, the efficiency of this SS is significantly
improved because no additional conference key establish-
ment protocol is needed.
1798 Secur
Scheme 3. (k+ 1, n) SS over networks using a multivariate
polynomial (n is even).

Shares generation
Step 1. The dealer selects a random polynomial having degree

k as f(x) = akx
k +… + a1x + a0 modN, where ai ∈ ZN,

f n 0ð Þmod N ¼ an0 ¼ s, and s is the secret. The n-variate
polynomial is F x1; x2;…; xnð Þ ¼ ∏n

i¼1f xið Þ mod N.
Step 2. The dealer computes share, si xð Þ ¼ f ið Þ 1

n�1f xð Þ mod N, for
each user Pi , where i is a public information associated
with the user, Pi, and sends each share, to user Pi

secretly, for i =1,2,…,n.
Secret reconstruction
We assume that r (i.e.,k+ 1 ≤ r ≤ n) shareholders, Pi1 ;Pi2 ;…;Pirf g,
want to reconstruct the secret.
Step 1. Each shareholder, Pij , uses his/her share, sij xð Þ ¼

f ij
� � 1

n�1f xð Þ , to compute a conference key, K ¼
∏r

l¼1;l≠jsij ilð Þ�sn�r
ij

0ð Þmod N, and vij ¼ sn�1
ij

0ð Þmod N.
Step 2. Each shareholder,Pij , computes a ciphertext, cij ¼ EK vij

� �
,

and broadcasts cij to all other shareholders, where EK vij
� �

denotes the encryption of vijusing the key K.
Step 3. After receiving all ciphertext, cij ; each shareholder, Pij ,

computes vij ¼ DK cij
� �

, j = 1, 2,…, r, where DK cij
� �

denotes the decryption of cijusing the key K.
Step 4. The secret can be obtained by computing

∑
r

j¼1
vij ∏

r

l¼1;l≠j

0� il
ij � il

mod N ¼ s.

In a (k+1, n) SS, the secret can be reconstructed when
there are k+1 or more than k+1 shareholders participated
in the secret reconstruction. Because 1≤ k+1≤ n, the dealer
needs to select an n-variate polynomial, F(x1, x2,…, xn), to
generate shares, which allows k+1 or more than k+1 share-
holders in the secret reconstruction to establish a conference key
following a (k, n, n)CKEP. In Step 1, the conference key isK ¼
∏r

l¼1;l≠jsij ilð Þ�sn�r
ij

0ð Þmod N ¼ ∏r
l¼1sij ilð Þ�sn�r

ij
0ð ÞmodN, in

which only shareholders in the set, Pi1 ;Pi2 ;…;Pirf g, are able
to compute. Thus, in Step 3, only shareholders in the set can
obtain vij ¼ DK cij

� �
, j=1, 2,…, r. The following theorem

proves that the secret can be obtain in Step 4.

Theorem 4. The secret can be obtained in Step 4 by all
shareholders.

Proof. In Step 1, each shareholder,Pij, uses his or her share,

sij xð Þ ¼ f ij
� � 1

n�1f xð Þ , to compute vij ¼ sn�1
ij

0ð Þmod N ¼

f ij
� �

f n�1 0ð Þ. In Step 4, we have ∑
r

j¼1
vij ∏

r

l¼1;l≠j

0� il
ij � il

modN ¼

f n�1 0ð Þ∑
r

j¼1
f ij
� �

∏
r

l¼1;l≠j

0� il
ij � il

mod N ¼ f n 0ð Þ ¼ an0 ¼ s. ■
5. APPLICATION TO SECURE
GROUP COMMUNICATIONS

User authentication and key establishment are two of the
most fundamental security services in computer and
ity Comm. Networks 2015; 8:1794–1800 © 2014 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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communication application. The user authentication
can ensure verifiers that the prover is the real entity
whom he or she claimed to be. The key establishment
protocol allows all communication entities to share a
session key and use it to protect the exchanged
message.

All user authentication protocols [24–30] are one-
to-one type of authentications in which the prover
interacts with the verifier to verify the identity of the
prover. For example, the RSA digital signature [30]
can be used to authenticate the signer of the signature.
In this approach, the verifier sends a random challenge
to the prover. Then, the prover digitally signs the
random challenge and returns the digital signature of
the challenge to the verifier. After successfully verify-
ing the digital signature, the verifier is convinced that
the prover is the one with the identity of the public-
key digital certificate used to verify the digital signa-
ture. In a group-oriented application that involves n
users, each user can employ a conventional authentica-
tion protocol for n� 1 times to authenticate other users.
The complexity of this approach is O(n). This complex-
ity may become the bottleneck of a group-oriented
application.

Although the trend of communications has been
moved into group communication, all solutions of
secure group communication are still based on the
approaches designed for peer-to-peer communications.
In a recent paper [31], a new type of authentication,
called the group authentication, has been proposed,
which is specially designed for the group-oriented com-
munications. The group authentication is very efficient
because it authenticates all users belonging to the same
group at once. If the verification is passed successfully,
all users are members; otherwise, additional user
authentication is needed to identify non-members. The
group authentication proposed by Harn [31] is based
on a (t,n) SS. Each user needs to be registered at a
group manager (GM) initially to obtain a secret share
to become a group member. The GM publishes the
one-way value of the secret. Later, in group authentica-
tion, all users need to release their shares to determine
whether the one-way value of the recovered secret is
the same as the published one-way value. However,
the group authentication proposed by Harn [31] did
not provide the group key distribution. An additional
group key distribution protocol is needed to achieve
the complete objective of secure group communications.

In Scheme 4, we show that if our proposed multivar-
iate polynomial is used to generate shares for uses
initially, later, in a group communication, shares of
users can be used not only to authenticate users
belonging to the same group but also to establish a
secret group key. Therefore, the efficiency of the
secure group communication is significantly improved
because both group authentication and group key
establishment can be achieved simultaneously using a
multivariate polynomial.
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Scheme 4. Secure group authentication and key establish-
ment involving n users (n is even).

Share generation
Step 1. The GM selects a random polynomial having degree k as

f (x) = akx
k +… + a1x + a0 modN, where ai ∈ ZN, f n 0ð Þmod

N ¼ an0 ¼ s, and s is the secret. The n-variate polynomial
is F x1; x2;…; xnð Þ ¼ ∏n

i¼1 f xið Þ mod N . GM makes h(s)
publicly known, where h is a one-way function.

Step 2. The GM computes share, si xð Þ ¼ f ið Þ 1
n�1f xð Þ mod N , for

each user Pi , where i is a public information associated
with the user, Pi, and sends each share, to user Pi
secretly, for i=1,2,…,n.

Group authentication and key establishment
We assume that r (i.e.,k+ 1 ≤ r ≤ n) users, Pi1 ;Pi2 ;…;Pirf g, want
to establish a secure group communication.
Step 1. Each user, Pij , uses his/her share, sij xð Þ ¼ f ij

� � 1
n�1f xð Þ, to

compute a conference key, K ¼ ∏r
l¼1;l≠jsij ilð Þ�sn�r

ij
0ð Þ

mod N, and vij ¼ sn�1
ij

0ð Þmod N.
Step 2. Each user, Pij , computes a ciphertext, cij ¼ EK vij

� �
, and

broadcasts cij to all shareholders, where EK vij
� �

denotes
the encryption of vijusing the key K.

Step 3. After receiving all ciphertext, cij each user, Pij , compute
cij ¼ DK cij

� �
, j = 1, 2,…, r, where DK cij

� �
denotes the

decryption of cijusing the key K.
Step 4. Each user, Pij , computes ∑

r

j¼1
vij ∏

r

l¼1;l≠j

0� il
ij � il

mod N ¼ s’. If h

(s ’) = h(s), all users are group members and K is the
secret group key for the group communication;
otherwise, there are non-members.

In a group consisting of n users, any number of users
(i.e., the number of users, r, in a group communication is
2 ≤ r ≤ n) may form a secure group communication.
Therefore, the GM needs to select an n-variate polynomial,
F(x1, x2,…, xn), to generate shares, which allows any num-
ber of users to establish a group key following a (k, n, n)
CKEP. In Scheme 4, each user obtains a share from the
GM initially. The shares can be used by users to construct
a secret group key following a (k, n, n) CKEP protocol and
recover the secret for group authentication. In Step 1, each
user can use his or her share to compute a group key non-
interactively and use it to encrypt the exchanged informa-
tion to other users. In Step 4, if all users in the group com-
munication are group members and compute their values in
Steps 1 and 2, honestly, each group member can compute
the secret and authenticate the group. At the same time,
the group key obtained in Step 1 is used to protect mes-
sages of the group communication. However, if there is
any non-members, the secret computed by users does not
match to the published one-way secret and non-members
can be detected.
6. CONCLUSION

We have proposed a (k,m, n) CKEP protocol for group
communication. We use a special symmetric m-variate
polynomial to limit the size of memory space of each user.
The protocol can support any conference involving r users,
where r ≤m. We provide performance and security analysis
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of the proposed protocol. In addition, we introduce two ap-
plications, which use our proposed polynomial to signifi-
cantly improve the efficiency.
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