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Abstract. A definition of finiteness is a set-theoretical property of a

set that, if the Axiom of Choice (AC) is assumed, is equivalent to stating

that the set is finite; several such definitions have been studied over the

years. In this article we introduce a framework for generating definitions

of finiteness in a systematical way: basic definitions are obtained from

properties of certain classes of binary relations, and further definitions

are obtained from the basic ones by closing them under subsets or under

quotients.

We work in set theory without AC to establish relations of implication

and independence between these definitions, as well as between them

and other notions of finiteness previously studied in the literature. It

turns out that several well known definitions of finiteness (including

Dedekind finiteness) fit into our framework by being equivalent to one

of our definitions; however, a few of our definitions are actually new. We

also show that Ia-finite unions of Ia-finite sets are P-finite (one of our

new definitions), but that the class of P-finite sets is not provably closed

under union.

1. Introduction

It is well known that several characterizations of finiteness fail to be

equivalent if the Axiom of Choice (AC) is not assumed. The standard

definition, namely, that a set is finite if it has n elements for some natural

number n, is absolute for transitive models of Zermelo–Fraenkel (ZF) set
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theory (we also call this I-finiteness, cf. Section 2, Definition 1). On the

other hand, notions like Dedekind finiteness (a set is Dedekind finite if it is

not equinumerous with any proper subset) are equivalent to the standard

definition in every model of ZFC (ZF plus AC), but are satisfied by some

infinite sets in some models of ZF.

One of the reasons that led some researchers to introduce different defini-

tions of finiteness was a foundational concern: how to capture the concept of

finiteness without making use of external objects like the natural numbers

(see Tarski [at24]). That concern soon became irrelevant, as a canonical

way of representing natural numbers as sets was devised; nevertheless, the

definitions of finiteness remain a useful way of classifying non-well-orderable

sets according to their cardinal-invariant properties.

In this paper we introduce a framework for generating definitions of finite-

ness systematically. We start from the following observation, which holds

under AC: A set X is finite if and only if

(1.1)
any transitive, antisymmetric binary relation on X

has a maximal element.

We modify the property in 1.1 to obtain four definitions of finiteness by

considering the following four classes of binary relations: partial orders,

linear orders, tree orders, and well orders. Notice that all these relations are

transitive and antisymmetric (dropping any of these two conditions makes
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the notion of maximal elements useless in this context); also, reflexivity and

irreflexivity are included whenever needed, since they are irrelevant for the

existence of maximal elements. See Definition 4 for the actual statements

(property 1.1 corresponds to P-finiteness).

In the last section we will look at certain “finite unions of finite sets,”

where finite can mean one of the less restrictive notions of finiteness men-

tioned above and detailed in Section 2. Note that with AC, any finite union

of finite sets is finite, and so it is natural to ask which notions of finiteness

are closed under “finite” unions in set theory without AC. In ZF, it is easy

to verify that I-finiteness is closed under unions of I-finite families of sets,

and that Dedekind finiteness is closed under unions of Dedekind-finite fam-

ilies, but at the same time it is known that several well studied definitions

do not have this property. In this paper we will show that Ia-finite unions

of Ia-finite sets (cf. Section 2, Definition 1) are P-finite (cf. Section 2, Def-

inition 4); however, we also show that P-finiteness is not provably (in ZF)

closed under P-finite unions.

2. Definitions

In order to establish the relative strength of the notions of finiteness we

will introduce in this paper, we dedicate the first part of this section to

listing some of those notions of finiteness that have already been studied in
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the literature in some detail. These will comprise Definitions 1, 2, and 3

below, which were collected in Howard and Rubin [hr98] and De la Cruz

[odlc02].

Definition 1. A set X is

(1) I-finite if every non-empty family of subsets of X has a maximal (or

minimal) element under inclusion.

(2) Ia-finite if it is not the disjoint union of two non-I-finite sets.

(3) II-finite if every family of subsets of X linearly ordered by inclusion

contains a maximal element.

(4) III-finite if there is no one-to-one map from P (X) into a proper

subset of P (X) .

(5) IV-finite if there is no one-to-one map from X into a proper subset

of X.

(6) V-finite if X = ∅ or there is no one-to-one map from 2×X into X.

(7) VI-finite if X is empty or a singleton, or else there is no one-to-one

map from X ×X into X.

(8) VII-finite if X is I-finite or it is not well orderable.

Definitions Ia and VII are due to Lévy, while definition IV is due to Dedekind

[rd72]. Tarski [at24] introduced I, II, III and V; definition VI was attributed

to Tarski by Mostowski [am38].
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Remark 1.

(1) Tarski [at24] observed, without using AC, that a set is I-finite if and

only if it is finite in the ordinary sense mentioned in the introduction

(i.e., having n elements with n ∈ ω). Thus, the terms finite and

I-finite may be used interchangeably, though we shall prefer to use

the former here.

(2) In ZF, a set is IV-infinite if and only if it contains a well orderable

infinite subset, and III-infinite if and only if it has a well orderable

infinite partition.

The next group of definitions is due to Truss [jt74].

Definition 2. Define the following classes of cardinals:

(1) ∆1 = {a : a = b + c → b or c is finite}

(2) ∆2 = {|X| : any linearly ordered partition of X is finite}

(3) ∆3 = {|X| : any linearly ordered subset of X is finite}

(4) ∆4 = {a : there does not exist a function from a onto ℵ0}

(5) ∆5 = {a : there does not exist a function from a onto a + 1}

For i = 1, . . . , 5, we will say that a set X is ∆i-finite if |X| ∈ ∆i.

Remark 2. It is clear that Ia-finiteness is equivalent to ∆1-finiteness.

Truss notes further that II-finiteness is equivalent to ∆2-finiteness and III-

finiteness to ∆4-finiteness.
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Lastly, we have the following definition of Howard and Yorke [hy89]:

Definition 3. A set X is D-finite if it is empty, a singleton, or if X =

X1 ∪X2, where |X1| , |X2| < |X| (such a set is also called decomposable).

We now introduce definitions of finiteness derived from classes of order re-

lations, as described in the introduction. It will follow from the implications

proved in the next section that these are bona fide definitions of finiteness

(that is, that they are equivalent to ordinary finiteness under AC).

Definition 4. A set X is

(1) P-finite if it contains a maximal element under every partial order-

ing.

(2) L-finite if it contains a maximal element under every linear ordering.

(3) W-finite if it contains a maximal element under every well ordering.

(4) Tr-finite if it contains a maximal element under every tree ordering.

(A tree ordering is a partial ordering in which the set of predecessors of any

element forms a well ordering.)

Next, we introduce a means of deriving new definitions of finiteness from

old ones. Let Q stand for any of the notions given in this section.

Definition 5. A set X is

(1) Q1-finite if every set that X maps onto is Q-finite.
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(2) Q2-finite if every set that maps one-to-one into X is Q-finite.

Our interest in the preceding definition will be the cases where Q represents

one of the notions of finiteness in Definition 4.

Remark 3.

(1) It is easy to see that if Q is any notion of finiteness, then a set X is

Q1-finite if and only if every partition of X is Q-finite, and Q2-finite

if and only if every subset of X is Q-finite.

(2) The notions of finiteness in Definitions 1, 2, and 3 above are cardinal

invariants (cf. De la Cruz [odlc02]). This also holds for the notions

in Definition 4, and those obtained from Definition 4 via Definition 5,

as can be easily checked case by case.

(3) Note that each of the notions given in this section yields a corre-

sponding definition of infinity: if Q is any definition of finiteness,

then we will say that a set is Q-infinite if it is not Q-finite. In

the case of a I-infinite set, we will simply use the equivalent term

infinite, whereas a Ia-infinite set will be called partible. An infinite,

Ia-finite set is called amorphous.

3. Implications between notions

For the sake of convenience, we will adopt the notation used by De la

Cruz [odlc02]. If Q and Q′ are any notions of finiteness such that whenever
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a set is Q-finite then it is Q′-finite, we will write Q −→ Q′. We will write

Q←→Q′ if Q −→ Q′ and Q′ −→ Q.

Lévy [al58] established the following:

I −→ Ia −→ II −→ III −→ IV −→ V −→ VI −→ VII,

while Truss [jt74] showed that III −→ ∆5 −→ IV and II −→ ∆3 −→ IV.

Howard and Yorke [hy89] additionally showed that IV −→ D −→ VII.

We begin with some lemmas which we will use to prove the main results

of this section.

Lemma 1. If Q is any of the notions of finiteness from Section 2, then

Q1 −→ Q2 −→ Q.

Proof. The proof will consist mainly of reminding the reader of the defini-

tions.

(Q1 −→ Q2) Given a set X, observe that every set that maps one-to-one

into X can be mapped onto by X. So if every set that can be mapped onto

by X is Q-finite (i.e. X is Q1-finite), then every set that maps one-to-one

into X is Q-finite (i.e. X is Q2-finite).

(Q2 −→ Q) Now let X beQ2-finite. That means that every set that maps

one-to-one into X, including X itself, is Q-finite. �
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It is easy to check now that the notions Q2 and (Q2)2 are equivalent,

as are the notions Q1, (Q1)1, (Q1)2, and (Q2)1, meaning that Definition 5

yields at most two new notions of finiteness for each notion Q.

The task for the remainder of this section will be to find all relations of

implication between each of the new notions P, L, Tr, and W, as well as

their Definition 5 variants, and the old notions from Definitions 1–3. Several

of the old notions will be shown equivalent to new ones, so that what we

have are new characterizations of old notions of finiteness in terms of order

relations. Other notions from Definition 4 really are new. The implications

proved in this section will be the strongest possible in ZF between these

notions; the independence results in the next section will show that no

stronger implications are provable in ZF.

Remark 4. Several implications between the new notions are clear. We

immediately have P −→ L −→ W and P −→ Tr −→ W (since every

linear order is a partial order, and so on). More implications follow from

Lemma 1 above, and from the fact that whenever Q and R are two notions

with Q −→ R, we have Q1 −→ R1 and Q2 −→ R2.

We now study each of the four notions P, L, Tr, and W one by one

together with their Definition 5 variants, beginning with P-finiteness.

Theorem 1. P1←→ P2←→ P
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Proof. In view of Lemma 1, it suffices to show that P −→ P1. Take X to

be a P-finite set, and suppose 〈S,≤〉 is any partial order such that X maps

onto S. Say f : X → S is a surjection. We define a relation � on X by

the rule that, for all x, y ∈ X, x � y if and only if either x = y or else

f (x) 6= f (y) and f (x) ≤ f (y) . It is easy to see that � partially orders

X, and consequently that there is an x ∈ X which is maximal in X under

� . Now suppose there exists an s ∈ S such that f (x) ≤ s, meaning there

must be a y ∈ X such that f (y) = s and x � y. But this only happens if

x = y, so s = f (x) , and f (x) is in fact maximal in S under ≤ . Therefore,

we see that S is P-finite and, as a result, that X is P1-finite. �

The next theorem shows that P-finiteness is equivalent to a modification

of P-finiteness that may look stronger at first glance. Given a partial order

� on a set X, a �-chain is a subset of X that is linearly ordered by �. It

is easy to see that X being P-finite is equivalent to X having no infinite

chains for any partial order �. It is less obvious that for each � on X, the

size of the �-chains must be bounded.

Theorem 2. A set X is P-finite if and only if for each partial order � on

X, there is a positive integer M such that every �-chain of X has length

less than M .
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Proof. Let X be a P-finite set and fix a partial order � on X. For x ∈ X,

let f(x) be the maximum integer n such that there is a chain of length n

with x at the bottom, if such a maximum exists. For example, if x is a

maximal element, then f(x) = 1. First, observe that the range of f must

be a finite subset of ω (since X is P1-finite). Let M be the maximum of

the range of f . It just remains to show that f(x) is defined for all x ∈ X;

it follows that X has no �-chain of length greater than M .

Let Y be the subset of X on which f is undefined, and suppose by way

of contradiction that Y is non-empty. Since X is P2-finite, Y is P-finite

and must have a �-maximal element y. Since f(y) is undefined, there must

be a chain C ⊂ X starting with y and having length at least M + 2. Let

x be the second element in the chain, so that C r {y} is a chain starting

with x of length at least M + 1. But now we have a contradiction because

C r {y} has no elements in Y (since y is maximal in Y ), and so f(x) must

be defined and at most M . �

The “moreover” part of the next theorem will be used in Section 5.

Theorem 3. Ia −→ P −→ II. Moreover, any P-infinite set has a partition

into two P-infinite sets.
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Proof. To see that P −→ II is straightforward, since this implication may

be rewritten as P1 −→ L1 (Theorems 1 and 5), and P1 −→ L1 follows from

P −→ L.

Now let X be any P-infinite set. To prove Ia −→ P we just need to show

that X has a partition into two infinite parts. It is barely any more work

to show that X has a partition into two P-infinite parts, and that is what

we will do.

There exists a partial ordering � on X under which X contains no maxi-

mal element. For each x ∈ X define Bx = {y ∈ X : y � x}. In case there is

an x ∈ X such that Bx is P-infinite, then we are done since the complement

of Bx in X clearly has no �-maximal element so is also P-infinite.

So suppose Bx is P-finite for each x ∈ X. In this case we can define a

rank function on X. Let r(x) be the maximum length of any �-chain in

Bx. Theorem 2 shows that this r is defined for each x ∈ X. Since X has

no �-maximal element, the range Ran(r) of this rank function must be an

unbounded subset of ω. Partition Ran(r) into two infinite parts. Then the

inverse image of each part is a subset of X that r maps onto an infinite well

orderable set, so must be P-infinite (in fact III-infinite). �

Next we study L-finiteness. It should not be surprising that ∆2 and ∆3

finiteness have characterizations in terms of L-finiteness, since their original

definitions are in terms of linear orderings.
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Lemma 2. If X is infinite and 〈X,�〉 is a linear order, there exists Y ⊂ X

such that either 〈Y,�〉 or 〈Y,�〉 (where �= {(a, b) : (b, a) ∈�}) has no

maximum element.

Proof (by contrapositive). Assume both that (1) every subset of X has a

�-maximum and (2) every subset of X has a �-minimum (or, equivalently,

a �-maximum). By (2), we have that X is well ordered by �, say in type

α. Now any ordinal of type ≥ ω has an infinite subset with no maximal

element (e.g., the set ω). So by (1), we know that α < ω, and consequently

X is finite. �

Lemma 3. A set X is L-finite if and only if it is finite or else not linearly

orderable.

Proof. If X is finite or has no linear ordering, then X clearly satisfies the

definition of L-finiteness. Conversely, suppose X is infinite and has a linear

ordering ≤. By Lemma 2, there is a subset Y ⊆ X with no ≤-maximum

(or minimum, but in that case simply reverse the order of ≤). Now it is

easy to form a new linear order � on X by modifying ≤ so that the two

orders agree on Y and on X rY , but in which all elements of X rY precede

all elements of Y under �. This shows X to be L-infinite, since it has no

�-maximum. �

Theorem 4. ∆3←→ L2
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Proof. A set X is L2-finite if and only if every subset of X is L-finite (Re-

mark 3.1). This is equivalent (by Lemma 3) to the condition that every

linearly orderable subset of X is finite; i.e., X is ∆3-finite. �

Theorem 5. II←→ L1

Proof. A set X is II-finite only if it is ∆2-finite (see Remark 2), which means

that every linearly ordered partition of X is finite. The proof of this theorem

now proceeds just as the proof of Theorem 4, but referring to partitions of

X instead of subsets of X. �

In contrast to L1 and L2, L-finiteness itself is not equivalent to any of our

other notions of finiteness. The strongest implications provable in ZF are

just the obvious ones in the following statement.

Theorem 6. ∆3 −→ L −→ VII

Proof. Straightforward; rewrite as L2 −→ L −→W (by Theorems 4 and 7).

�

The following equivalences involving W-finiteness are closely analogous

to equivalences above involving L-finiteness.

Theorem 7. VII←→W

Proof. Analogously to the proof of Lemma 3, the proof of VII −→ W is

trivial. Conversely, suppose X is not VII-finite, so it is both infinite and
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well-orderable. In that case, the cardinality of X is some ℵ, say ℵα. But

then X has a well-ordering whose type is the initial ordinal ℵα (or ωα if you

prefer that notation for ordinals). Since ℵα has no maximal element, X is

not W-finite. �

Theorem 8. IV←→W2

Proof. A set X is W2-finite if and only if every subset of X is W-finite

(Remark 3.1). This is equivalent (by Theorem 7) to the condition that

every well-orderable subset of X is finite; i.e., X is IV-finite. �

Theorem 9. W1←→ III

Proof. It is probably simplest to replace W by VII and III by ∆4 and observe

that VII1 (“Every set that X maps onto is finite or non-well-orderable”) is

equivalent to ∆4 (“X does not map onto ℵ0”). �

Remark 5. Several of the notions of finiteness in this paper fall between

W1 and W (i.e. between III and VII), as can be seen in Figure 1 at the end

of this section. For any such notion Q with W1 −→ Q −→ W, we have

Q1←→W1 ←→ III. (Recall (W1)1←→W1 and Remark 4.)

Finally we study Tr-finiteness.

Theorem 10. ∆5←→ Tr2
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Proof. (∆5 −→ Tr2) Let X be Tr2-infinite, so that there is a subset S of

X with a tree ordering � that has no maximal element. Fix some u /∈ X,

and let g be the function that is the identity on X r S and defined on S as

follows:

g (s) =





the � -predecessor of s, if such a predecessor exists;

u, if s has no � -predecessor.

Then g is a surjection from X onto X ∪ {u}, proving that X is ∆5-infinite.

(Tr2 −→ ∆5) Suppose now that X is ∆5-infinite, that is, that there

is a function f from X onto X ∪ {u}, with u /∈ X. We define a tree

ordering � of height ω without maximal elements on a subset of X by

recursion: take T0 = f−1(u) (the elements here are the “roots” of the tree);

if levels T0, . . . , Tn have been defined, as well as � on T0∪· · ·∪Tn, we define

Tn+1 = f−1(Tn) and for each a ∈ Tn+1 we set b � a iff b ∈ T0 ∪ · · · ∪ Tn and

b = f(a) or b � f(a) (or if b = a). It can be easily checked that � is a tree

ordering on T =
⋃

n∈ω Tn that satisfies the required properties. �

Theorem 11. ∆5 −→ Tr −→ V

Proof. The first implication is clear since ∆5 ←→ Tr2 (Theorem 10).

To prove Tr −→ V, suppose that X is V-infinite, so that there exists

a bijection F : 2 × X → X. The function f : X → X given by f(x) =

F (〈0, x〉) is one-to-one; let Y = f ′′X and Z = X r Y . For each z ∈ Z
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we have that f(z) 6= z, so the orbit {fn(z) : n ∈ ω} is infinite and can be

naturally ordered in order type ω.

The union of all the f -orbits of elements of Z is then naturally ordered

as a tree of height ω with no maximal elements (each z ∈ Z is a root and

there is no branching). If there are elements y ∈ Y that are not in that

union we place them below the root

F (1, f−1(y)).

This finishes defining the desired tree order on all of X. �

(Notice that a small variation of the proof above yields the ZF fact that

if |X| = 2 · |X| then |X| = ℵ0 · |X|.)

Corollary 1. Tr1 ←→W1←→ III

Proof. See Remark 5; Theorem 11 puts the notion Tr between III and VII.

�

All the implications between notions of finiteness are summarized in Fig-

ure 1. Notice that if Q is any notion of finiteness given in Section 2, then

I −→ Q −→ VII. Now if the Axiom of Choice is assumed, and every set

is well orderable, then VII −→ I. Thus all the notions in Figure 1 are le-

gitimate notions of finiteness in the sense of being equivalent to I-finiteness

under AC.
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Figure 1. Relations between definitions of finiteness. Ar-

rows indicate implications (cf. Section 3). Arrows pointing in

only one direction are not reversible in ZF (cf. Section 4).

4. Independence results

In this section, we show that the implications established above are the

only ones that can be proved in ZF.

We begin with references to the known results. Lévy [al58] proved that

if Q and Q′ are any of the notions listed in Definition 1, then Q 6−→ Q′

whenever Q is below Q′ in that list. (The techniques to give these inde-

pendence results in ZF were not available to Lévy in 1958. He worked in
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the context of the weaker theory ZFA, but his results all transfer to ZF by

the Jech-Sochor Embedding Theorem; see comments on this below.) Truss

[jt74] showed III 6−→ ∆3 and ∆3 6−→ ∆5, meaning that for Q in Defini-

tion 1, Q −→ ∆3 only if Q is listed above III, and that ∆3 −→ Q only if Q

is IV or listed below IV. It also follows, since ∆3 −→ IV, that IV 6−→ ∆5.

De la Cruz [odlc02] established that ∆5 6−→ III and that V 6−→ D, while

Howard and Yorke [hy89] showed that D 6−→ VI. So Q −→ D only if Q

is above V in Definition 1, and D 6−→ Q for any Q in Definition 1 above

VII. This settles all questions about implications between the notions of

finiteness from Definitions 1, 2, and 3 of Section 2.

We now begin to address the implications involving notions from Defini-

tion 4 and Definition 5. We can use the known fact that I 6−→ Ia to separate

P-finiteness from Ia-finiteness. Recall that an amorphous set is one that is

Ia-finite but infinite (i.e., an infinite set with no partition into two infinite

parts).

Theorem 12. P 6−→ Ia

Proof. Working from ZF plus “There exists an amorphous set” (which is

equiconsistent with ZF by remarks above) we prove that there is a set

which is P-finite and Ia-infinite. Given an amorphous set X, there must be
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another amorphous set Y with X∩Y = ∅. Clearly X∪Y is not amorphous;

it is Ia-infinite.

Both X and Y are Ia-finite and hence P-finite (Ia −→ P by Theorem 3).

Any partial order on X ∪ Y must have an element a which is maximal in

X and an element b which is maximal in Y . At least one of a or b must be

maximal in X ∪ Y , which shows that X ∪ Y is P-finite. �

For most of the remaining independence results, we will work directly

with models of set theory rather than relying on previously obtained inde-

pendence results as in the proof of Theorem 12. We will obtain our results

in the theory ZFA, a weakened version of ZF which allows for the exis-

tence of a atoms, objects with no elements yet different from each other

and from the empty set (extensionality must be weakened so that it ap-

plies only to sets); we will assume that the class A of atoms is actually a

set. Models of ZF are rigid, but in a model M of ZFA the permutations

of A correspond exactly with the automorphisms of the universe (that is,

∈-automorphisms of M which constitute a definable class in M). When M

satisfies ZFA + AC + “A is infinite” (a theory that is consistent relative to

ZF), the rich provision of automorphisms allows us to construct so-called

permutation submodels of M , which are models of ZFA where AC fails in a

controlled way.
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Even though ZFA is a weaker theory, the independence results we obtain

in this way will also hold in ZF, by virtue of the Jech–Sochor Embedding

Theorem [tjj73, Chapter 6, js66], which allows for the embedding of initial

segments of permutation models into models of ZF. Without going into the

details, we only remark here that if a sentence of the form

∃x (x is Q-finite and Q′-infinite)

is true, then its truth is realized in an initial segment of the universe.

We give a summary of the construction of permutation models. For a

detailed description of permutation models, see [tjj73]; we will make note

below where our formulation differs slightly from the one there. Fix a model

V of ZFA + AC + “A is infinite”, where A is the set of atoms of V , and a

group G ∈ V of permutations of A. Abusing the notation, we identify each

π ∈ G with the class function π : V → V defined by the rule π (∅) = ∅ and

π (x) = {π (y) : y ∈ x} for all x. For any x ∈ V, we call the stabilizer of x

in G the group Gx = {π ∈ G : πx = x}; the pointwise stabilizer of x in G

is the group fixG (x) = {π ∈ G : π � x = Id} =
⋂

y∈x Gy. Now, if x and y

are objects (sets or atoms), we say x supports y if fixG (y) ⊆ Gy. We define

a base of supports (for G) as a set B satisfying the following properties:

GB = G; every a ∈ A is supported by some b ∈ B; for every b0, b1 ∈ B, there

is a c ∈ B which supports every element of b0∪b1. (In [tjj73], a permutation
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model is defined in terms of a normal filter on G instead of a base of supports

for G. The formulations are equivalent. The filter associated with the base

of supports B is the filter generated by {fixG(b) : b ∈ B}.) A commonly

used base of supports is the set of finite subsets of A, called the base of

finite supports. Now we say x ∈ V is symmetric (with respect to B and G),

if it is supported by some b ∈ B; we say it is hereditarily symmetric if every

element of the transitive closure of x is symmetric. The class NG,B of all

hereditarily symmetric sets with respect to G and B is a model of ZFA, and

we call it the permutation model obtained from G and B.

Howard and Yorke [hy89] have presented the permutation model M6,

whose construction is given below, and proved that in this model, the set

A is D-infinite.

Theorem 13. In the model M6, the set A of atoms is Tr-finite and L-finite.

Proof. The model M6 is constructed by first taking a model of ZFA+AC

and letting A be ordered in the order type of the rationals. Then M6 is

the permutation model obtained from the group G of permutations which

move finitely many elements of A and the base of supports B of bounded

subsets of A.

Let � be a tree ordering on A that is in M6; we will find a �-maximal

element. Since � is symmetric, there is a support E ∈ B such that fix(E) is
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a subset of G�; in other words, every π ∈ fix(E) is a �-automorphisms of A.

Pick two distinct elements a and b in A r E. The permutation π := (a, b)

which just switches a and b is in fix(E). It follows that a � b iff b � a;

these cannot be both true so a and b are incomparable under �. If a is not

a maximal element, then there is c ∈ A such that a � c and b 6� c. But

then πa � πc, which means b � c and we have a contradiction. So a is a

maximal element.

Next, suppose ≤ is a linear ordering of A in M6 and let E ∈ B be a

support for ≤. Pick two distinct elements a and b in A r E. Arguing

as above we find that a and b must be incomparable under ≤, which is a

contradiction since ≤ is a linear order. Hence, there is no linear ordering of

A at all in M6. �

Corollary 2. Tr 6−→ D, L 6−→ D, Tr 6−→ IV, and L 6−→ IV.

Proof. It was just shown that in the permutation model M6, the set A of

atoms is Tr-finite and L-finite. That A is D-infinite is in [hy89]. To see that

A is IV-infinite in M6, take any infinite E ∈ B. Since each E ∈ B is subset

of A and a support for a well-ordering of itself, A has well-ordered infinite

subsets in M6. �

Consequently, Tr −→ Q only if Q is V, VI, or VII, or equivalent to one of

these.
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Any union of an amorphous set with a countably infinite set is another,

perhaps simpler example of a set that is Tr- and L-finite but IV-infinite.

However, the example of Corollary 2 may be preferable in that it shows

Tr- and L-finiteness of a set X to be consistent with the stronger property

“Every infinite subset of X is IV-infinite.”

Theorem 14. ∆3 6−→ Tr

Proof. Consider Fraenkel’s Second Model, in which A is the union of a

disjoint family of countably many pairs, A =
⋃
{Pn : n ∈ ω}, with no choice

function.

For every n ∈ ω, define Fn as a the set of all choice functions on {Pk : k ≤ n}

and set F =
⋃
{Fn : n ∈ ω} . It is shown in Truss [jt74] that F is ∆3-finite

in this model. However, the ⊆ relation on F is a tree ordering with no

maximal element, so F is Tr-infinite. �

Since ∆3 −→ IV, it follows that Q 6−→ Tr for any Q listed below III in

Definition 1. We also have that ∆5 −→ Tr but ∆5 6−→ ∆3, meaning

Tr 6−→ ∆3.

Theorem 15. III 6−→ L

Proof. Truss [jt74] showed that the set A in Mostowski’s ordered model is

III-finite. This set is infinite and linearly orderable (see Howard and Rubin

[hr98]) and so L-infinite. �
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It follows from the previous theorem, since III −→ IV −→ D and III −→

∆5 −→ Tr that Q 6−→ L for any Q in Definition 1 below II, and also that

D 6−→ L and Tr 6−→ L.

The last task of this section is to show that II 6−→ P. For the remainder

of this section, the relation symbol � will refer to a universal homogeneous

partial order on A, where A is a set of atoms. A partial order is called

universal if every finite partial order can be embedded in it, and is called

homogeneous if every order isomorphism between two of its finite subsets

can be extended to an automorphism of the entire set. Notice that such a

partial order has no maximal element. For a proof of the existence of a

countable universal homogeneous partial order, see Jech [tjj73].

Given a finite subset E of A, we say that two elements a ∈ A and b ∈ A

have the same E-type iff there is a �-isomorphism from E ∪ {a} to E ∪ {b}

whose restriction to E is the identity. (Equivalently, b and c have the

same E-type iff b and c satisfy exactly the same sentences in the structure

〈A,�, e1, . . . , en〉.)

For a proof of part 1 of the following lemma, which is straightforward,

see [tjj73]. Part 1 can be used to prove part 2 (which is not used in full

until Theorem 19).

Lemma 4. Let 〈A,�〉 be a countable universal homogeneous poset.
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(1) Let 〈F,≤〉 be a finite poset. If E ⊂ F and f : E → A is a partial

order embedding, then there is an embedding of F into A that extends

f .

(2) Let E be a finite subset of A; let a and b be �-incomparable elements

of A with the same E-type, and let D be a finite subset of A disjoint

from E ∪ {a, b}. Then there is an automorphism π of 〈A,�〉 that

fixes E pointwise, switches a and b, and such that πD ∩D = ∅.

Theorem 16. II 6−→P

Proof. Let N be the permutation model obtained from the group G of all

order automorphisms of 〈A,�〉, where � is a countable universal homoge-

neous partial order, and from the base B of finite supports. Since � is

symmetric with respect to G and has no maximal element, A is P-infinite

in N .

Recall that II ←→ L1 (Theorem 5). We will show that A is L1-finite in

N : Every linearly ordered set mapped onto by A is finite. Let 〈T,≤〉 be

a set with a linear order in N , and also in N let t : A → T be an onto

function. Let E ∈ B be a support for both t and ≤.

Let a and b be any two elements of A that have the same E-type; we

will show that t(a) = t(b). First, suppose a and b are incomparable under

�. Then there is a π ∈ G that switches a and b while fixing E pointwise.
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Suppose without loss of generality that t(a) ≤ t(b). Since π preserves both t

and ≤, we have t(πa) ≤ t(πb); in other words t(b) ≤ t(a). Thus t(a) = t(b).

More generally, a and b may not be incomparable. However, by Lemma 4

there is a c ∈ A such that c has the same E-type as a and b and such

that c is comparable with neither a nor b, in which case the argument just

presented shows that t(a) = t(c) = t(b). Now, since there are only finitely

many E-types, the range T of t must be finite, and this finishes the proof

that A is L1-finite in N . �

5. Closure under unions

For a class C of sets, we say that C is closed under unions iff whenever

both X ∈ C and X ⊂ C we have
⋃

X ∈ C. We will use the terminology

“Q-finiteness is closed under unions” as shorthand for “The class of Q-finite

sets is provably closed under unions, in ZF.” Since the class of finite sets

is closed under unions, closure under unions is a reasonable property for a

notion of finiteness to have. We will investigate closure under unions for

some of the strongest notions of finiteness defined in Section 1.

The class of II-finite sets is closed under unions. (Recall that II←→ L1.

It is easy to check that both (1) L-finiteness is closed under unions and (2)

Q1-finiteness is closed under unions whenever Q-finiteness is.) However,

this is the strongest notion of finiteness we have studied which has this
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property. The class of Ia-finite sets famously lacks closure under unions;

a disjoint union of two amorphous sets is obviously not amorphous. A

Ia-finite union of Ia-finite sets must be II-finite, since II-finiteness is closed

under unions; we will show that it must in fact be P-finite, giving a stronger

closure property (recall that P-finiteness is intermediate in strength between

Ia- and II-finiteness). We will also show that P-finiteness itself is not closed

under unions, so the best we can currently say about a P-finite union of

P-finite sets is that it is II-finite.

We omit the proof of the following simple characterization.

Lemma 5. A given set X is a finite union of Ia-finite sets if and only if

there is some n ∈ ω such that every partition of X has at most n infinite

parts.

Next, we show P-finiteness for a limited class of Ia-finite unions.

Lemma 6. Any Ia-finite union of finite sets is also a finite union of Ia-

finite sets (and hence is P-finite).

Proof. Let S be a Ia-finite collection of finite sets. Since S is Ia-finite, all

but finitely many of its members must have the same size. Set aside the

finitely many oddballs and assume that all members of S have cardinality

n. Let X =
⋃

S.
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Suppose, by way of contradiction, that X has a partition T into n + 1

infinite sets. For each s ∈ S, let f(s) be the set of elements of T that have

empty intersection with s. Note that f(s) is non-empty for each s, since

|s| < |T |. Now, since S is Ia-finite, there is a T ′ ⊂ T such that f(s) = T ′

for all but finitely many s ∈ S. But then t ∈ T ′ has non-empty intersection

with only finitely many s ∈ S, so t is finite, and we have a contradiction.

Thus X has no partition into more than n infinite sets, and the proof is

finished by Lemma 5. (Finally, note that a finite union of Ia-finite sets is

easily seen to be P-finite, as in the proof of Theorem 12.) �

Now we will show that every Ia-finite union of Ia-finite sets is P-finite.

We remark that the idea of the following proof can be expressed in terms

of ultrafilters. Every amorphous set has a natural non-trivial ultrafilter

(comprising the cofinite subsets). Although the empty ultrafilter is usually

disallowed, take it to be the natural ultrafilter on any finite set. This gives

a natural ultrafilter (which may be empty) on any Ia-finite union of Ia-finite

sets. Expressed in these terms, the previous lemma says that a set which

is small with respect to this ultrafilter must be P-finite; this is exploited in

the next proof.

Theorem 17. A Ia-finite union of Ia-finite sets is P-finite.
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Proof. Let S be a Ia-finite set of Ia-finite sets, and let x =
⋃

S. To show that

x is P-finite, it suffices to show, by Theorem 3, that x cannot be partitioned

into two P-infinite parts.

Let {a, b} be any partition of x into two parts. Since each t ∈ S is Ia-

finite, either t ∩ a or t ∩ b is finite. Thus the two subsets of S defined here

are disjoint:

Sa = {t ∈ S : t ∩ a is infinite}

Sb = {t ∈ S : t ∩ b is infinite}.

Since S is Ia-finite, one of those two sets, say Sa, is finite. Think of a as

the union of the two sets
⋃
{t ∩ a : t ∈ Sa} and

⋃
{t ∩ a : t ∈ S r Sa}. The

former is a finite union of Ia-finite sets, and the latter is a Ia-finite union of

finite sets. By Lemma 6, a is P-finite. �

As we show next, the converse of Theorem 17 cannot be proved without

assuming some choice.

Theorem 18. It is consistent in the theory ZF that not every P-finite set

is a Ia-finite union of Ia-finite sets.

Proof. Let N be the permutation model obtained from the group G of all

permutations of an infinite set A of atoms, and the base B of supports given

by finite partitions of A.
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To see that A is P-finite, let ≤ be a partial order of A in N , supported

by a finite partition E of A. Let n = |E|. Consider a chain of elements

a0 ≤ · · · ≤ an. There must be i and j in n such that ai and aj are both in

the same member of E. Then the permutation π = (ai, aj) is in fix(E), and

it follows that ai ≤ aj iff aj ≤ ai, so in fact ai = aj. This shows that all

≤-chains have size at most n, and consequently there must be a ≤-maximal

element.

Now suppose, working in N , that T is a Ia-finite set of Ia-finite subsets

of A; we will show that
⋃

T 6= A. First observe that since each E ∈ B is

a member of N , there is no subset of A that is amorphous in N . Thus the

elements of T are in fact finite subsets of A. By Lemma 6, there is a finite

set S of Ia-finite sets such that
⋃

T =
⋃

S. Again, the Ia-finite members of

S must be finite, and so
⋃

S is finite and therefore just a proper subset of

A. �

If it were true that P-finiteness were closed under union, then Theorem 17

could have been obtained as a trivial consequence. However, the following

theorem shows that P-finiteness is not provably closed under unions in ZF.

The proof uses forcing to extend a permutation model. Forcing in the

context of ZFA is not much different from ZF forcing, once it is understood

that atoms are to be names for themselves (like the empty set is a name for

itself when forcing in ZF). Details may be found in [bs89].
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Theorem 19. It is consistent with ZF for a P-finite union of P-finite sets

not to be P-finite.

Proof. Let N be the finite support permutation model used in Theorem 16

to show II 6−→ P, in which � is a universal homogeneous partial order on

A, and where G is the group of �-automorphisms of A.

By forcing, we will extend N by adding a new partition T of A, and show

that in the extension N [T ], T is a P-finite collection of P-finite subsets of

A. Clearly, the partial order � will witness that A itself is not P-finite in

N [T ] (as well as in N ), so we will have that in N [T ], A is a P-finite union

of P-finite sets that is not P-finite.

Let P be the notion of forcing whose conditions are partitions of finite

subsets of A with the qualification that no two elements in the same part

of any of these partitions are �-comparable. We say that a condition p

extends a condition q if and only if
⋃

q ⊆
⋃

p and the restriction of the

partition p to the set
⋃

q is the partition q.

Let Γ be a P-generic filter over N . There is a partition T of A defined

by Γ (and from which Γ may be defined); say a and b are in the same part

of T iff there is a condition p ∈ P with {a, b} ∈ p ∈ Γ. For each t ∈ T , the

elements of t are pairwise �-incomparable. For each a ∈ A, let Ta denote

the part such that a ∈ Ta ∈ T . Let Ṫ be a standard P-name for T , and for
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each a ∈ A let Ṫa be a standard P-name for Ta. The theorem is concluded

by proving the following two claims.

Claim A: For each a ∈ A, the set Ta is P-finite in N [T ].

Claim B: T is P-finite in N [G].

(Proof of Claim A.) Fix a ∈ A, and let≤ be a partial order on Ta. Suppose

≤̇ is a P-name for ≤, and let E be a finite support for ≤̇ in N . Let n be

the number of E-types (with respect to the universal homogeneous order �

on A). We will show that there is a ≤-maximal element in Ta by showing

that any chain of elements of Ta linearly ordered by ≤ has cardinality at

most n.

So by way of contradiction, suppose there is a chain of elements in Ta

with more than n elements. Since there are only n E-types, there must be

distinct elements b and c in this chain with the same E-type, say with b ≤ c.

Let p ∈ P such that p  b ≤̇ c. Assume also that p  {b, c} ⊂ Ṫa, which is

to say that {a, b, c} is a subset of some element of p. Since b and c are �-

incomparable (because they are both in Ta) and have the same E-type, there

is an automorphism π ∈ G such that π fixes E pointwise and π switches

b and c. Furthermore, we can arrange so that
⋃

(πp) ∩
⋃

p ⊆ E ∪ {b, c}

(Lemma 4(2) with D =
⋃

p r (E ∪ {b, c})). From this last remark and the

fact that b and c are in the same part of p, it follows that p and πp are
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compatible. And yet πp  πb ≤̇ πc, which is to say πp  c ≤̇ b. This

contradiction finishes the proof of the first claim.

(Proof of Claim B.) Let ≤ be a partial order on T in N [T ], and let ≤̇ be

a P-name for ≤ supported by E in N . Let T1 and T2 be distinct elements

of T , neither of which meet E; we will show that T1 and T2 cannot be

comparable under ≤. By P-genericity of T , there is some b ∈ T1 and some

c ∈ T2 such that b and c are �-incomparable and each of the same E-type.

Now suppose by way of contradiction that there is a condition p ∈ Γ such

that p  Ṫb ≤̇ Ṫc∧Ṫb 6= Ṫc. Since neither Ta nor Tb meet E inN [T ], we have

that neither b nor c is in the same part of p as any element of E. Again,

we can find π ∈ G such that π fixes E pointwise, π switches b and c, and

such that
⋃

(πp) ∩
⋃

p ⊆ E ∪ {b, c}. Again, πp and p must be compatible,

yet πp  Ṫc ≤ Ṫb, and we have a contradiction. Thus elements of T that do

not meet E are ≤-incomparable. Since only finitely many elements of T do

meet E, there must be a ≤-maximal element in T . �
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